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Abstract

Understanding the coupling structure of interacting systems is an important open problem, and many methods have
been proposed to reconstruct a network from observed data. Most require continuous observation of the nodes’
dynamics; however, in many situations, we can only monitor the times when some events occur (e.g., in neural
systems, spike times). Here, we propose a method for network reconstruction based on the analysis of event times
at the network’s nodes. First, from the event times, we generate phase time series. Then, we assimilate the phase
time series to the Kuramoto model by using the unscented Kalman filter (UKF) that returns the inferred coupling
coefficients. Finally, we use a clustering algorithm to discriminate the coupling coefficients into two groups that we
associate with existing and non-existing links. We demonstrate the method with synthetic data from small networks
of Izhikevich neurons, where we analyze the spike times, and with experimental data from a larger network of chaotic
electronic circuits, where the events are voltage threshold-crossings. We also compare the UKF with the performance
of the cross-correlation (CC), and the mutual information (MI). We show that, for neural network reconstruction,
UKF often outperforms CC and MI, while for electronic network reconstruction, UKF shows similar performance to
MI, and both methods outperform CC. Altogether, our results suggest that when event times are the only information
available, the UKF can give a good reconstruction of small networks. However, as the network size increases, the
method becomes computationally demanding.

1. Introduction

Inferring the structure of a network from observed data
is an important open challenge in complexity science,
with multiple practical applications [1–7]. When using
time series data, the main problems come from the fact
that usually only one or a few variables can be observed
(often not simultaneously), the observed variables can be
recorded during a limited time interval, with limited tem-
poral resolution, and with often unavoidable observational
noise. Many network inference (or network reconstruc-
tion) methods have been proposed [8–27], whose success
depends not only on prior knowledge of the system, but
also on the characteristics of the data.

The Kalman filter is a well-known data assimilation
technique to infer the parameters of a model given un-

certain observations [28, 29], and therefore, knowing the
model that describes the network, the Kalman filter can
be used to infer the coupling coefficients.

In [30] two of us used a nonlinear version of the
Kalman filter, the unscented Kalman filter (UKF) [31], to
reconstruct a network of mutually coupled Rössler-type
chaotic oscillators by analyzing, in each oscillator, the
dynamics of only one of the three variables that define
the phase space of the individual oscillators. We assumed
that we knew the model that described the oscillators and
all the parameters except the coupling coefficients. We
demonstrated the methodology using simulated data be-
cause UKF was unable to provide a good reconstruction
from the analysis of the experimental data. This was in-
terpreted as due to the fact that we had incomplete infor-
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mation about the model describing the experimental os-
cillators and/or about the filtering performed by the data
acquisition system, which was not taken into account in
the UKF model. That is, to reconstruct the network from
the analysis of a single variable, observed experimentally
in each node, we not only need a good knowledge of the
model that describes the dynamics of the nodes, but we
must also take into account the bandwidth of the data ac-
quisition system, which generally does not detect the in-
stantaneous values of the observed variables.

In a follow up study [32], we used UKF to reconstruct
small networks of Izhikevich neurons, also assuming that
we knew the model and parameters of individual neurons,
except the coupling coefficients. However, here we as-
sumed that we had complete information of the activity
of all neurons (i.e., for each neuron, we knew the time
evolution of the two variables that define the phase space
of the neuron). Using this information, we demonstrated
that UKF can infer the structural connectivity – that is,
the adjacency matrix – even if the network is directed and
evolves over time. Unlike bivariate link inference meth-
ods such as cross-correlation, CC, or mutual information,
MI, the UKF method is multivariate because it simultane-
ously analyzes the activity of N neurons and returns the
inferred N × N coupling coefficient matrix.

However, a typical experimental limitation is that only
neuronal spikes can be detected. Furthermore, the model
that describes neuronal activity is unknown. Therefore,
here we aim to determine whether neural connectivity can
be inferred if we only know the spike times.

This problem was addressed by Cestnik and Rosen-
blum [23], who considered pulse-coupled oscillators
whose phases are instantaneously reset by incoming
pulses. Using an iterative procedure to recover, from
the inter-spike intervals (ISIs), the phase response curves
(PRCs), the authors were able to recover all the proper-
ties of all the nodes, including the strengths of all con-
nections. This approach has the advantage that the data
requirements are not demanding (sequences of 200 spikes
allowed to reconstruct a network of 20 Morris-Lecar neu-
rons), but it assumes that the coupling between neurons
is mediated only by the pulses, and that it is sufficiently
weak to justify the description of the neural activity in
terms of PRCs. Another network inference method based
on the analysis of spike times was proposed by Casadiego
and coworkers [24]. By approximating the ISIs of each

neuron i by an unknown, locally smooth function of Ki

cross-spike intervals, the inference problem was mapped
to event spaces yielding linear equations that allowed least
squares solutions for the topology.

Machine learning (ML) network inference methods
have also been proposed. Panaggio and coworkers [25]
considered networks of phase oscillators and showed that
ML can reconstruct the interaction network, given suffi-
cient data on the transient evolution of each oscillator.

However, data limitations degrade the performance of
ML algorithms. Banerjee and coworkers [26] considered
the performance of reservoir computing, on synthetic data
simulated with coupled Lorenz chaotic systems and on ex-
perimental data of C. elegans neural activity, with known
structural network. The authors assigned scores that re-
flected the link probability between pairs of nodes and
studied how various limitations of data acquisition, such
as observational noise, affected the scores.

Complementing these efforts, here we analyze the sit-
uation in which the only information available for recon-
structing the network are event times (e.g., spikes times).
To use the UKF method, we need to assume a model and
a straightforward choice is the Kuramoto model of cou-
pled phase oscillators [33]. While we could use the cou-
pling coefficients inferred by UKF to define scores that re-
flect the link probability (as in [26]), here we reconstruct
the network by applying a clustering algorithm to the in-
ferred coupling coefficients, to discriminate them into two
groups that correspond to existing and non existing links
(as in [32]). This allows us to quantify the reconstruc-
tion performance by calculating the F1 score and the area
under the receiver operating characteristic curve (ROC).

To demonstrate this methodology, we analyze neu-
ral activity simulated with the Izhikevich model [34], as
well as experimental data recorded from coupled Rössler-
like chaotic electronic circuits with known structural net-
work [35]. To reconstruct the circuits’ network, we as-
sume that the only information we have are event times
–specifically, the times when the circuits’ voltages change
signs, from negative to positive values.

2. Models, datasets and methods

2.1. Izhikevich model
To generate the spikes data, we simulate a neural net-

work using the Izhikevich model, a neuron model capable
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Table 1: Dimensionless parameters used to simulate the Izhikevich
model.

a b c d I K σZ

0.2 2 −56 −16 −99 (0, 0.1) 0.02

of exhibiting many neuronal dynamics while being com-
putationally efficient [34]. Letting [x1, y1, . . . , xN , yN]T be
the state vector describing the state of the neural network,
the equations governing the system are

ẋi = 0.04 x2
i + 5xi + 140 − yi + I + Ei + σZξ

x
i ,

ẏi = a (b xi − yi) + σZξ
y
i ,

(1)

with the after-spike reset condition:

if xi > 30, then

xi → c,
yi → yi + d.

(2)

Here xi represents the voltage and yi the membrane re-
covery variable accounting for the activation of the ionic
currents of the i-th neuron. For the constant parameters a,
b, c, d, and I, specified in Table 1, we selected values such
that the neurons display chaotic spiking dynamics [36]. Ei

represents the electrical coupling between neurons and is
given by

Ei = K
N∑

j=1

Ai j(x j − xi), (3)

where K is the coupling conductance and Ai j are the coef-
ficients of the adjacency matrix: Ai j = 1 whenever neuron
i is connected to neuron j, otherwise Ai j = 0. Since elec-
tric coupling is symmetric, the adjacency matrix is sym-
metric, Ai j = A ji. Finally, ξx

i and ξyi represent Gaussian
noise terms, and σZ is the square root of the noise vari-
ance.

We solved the model equations using a fourth-order
Runge-Kutta method with an integration step of dt = 0.01
and initial conditions drawn from a normal distribution
centered at x = −56.25 and y = −112.5, with standard
deviation σ = 3. A transient of 80000 time steps was
discarded, and the times of the spikes that occurred in
the following 40000 time steps were saved for analysis.
The spike times were defined as the times in which the
variable x reaches the reset condition, Eq. (2), and were
linearly interpolated such that ti : x(ti) = 30.

Figure 1: Spiking activity of a random network of 6 Izhikevich neurons
and 8 links when the neurons are (a) uncoupled (K = 0), (b) weakly
coupled (K = 0.01), (c), (d) strongly coupled (K =0.04 and 0.1 respec-
tively).

Figure 1 displays an example of the spikes of a random
network with 6 neurons and 8 links, for different coupling
strengths. As can be observed, as the coupling increases,
the spikes tend to become synchronized.

2.2. Chaotic electronic circuits

We also analyze a freely available experimental data
set [35] that contains measurements from a network of
N = 28 chaotic (Rössler-like) mutually coupled electronic
circuits; the circuits are coupled with 42 links whose
strength (the same for all the links) varies from 0 to 100.
For each coupling strength, the voltage in each circuit was
recorded three times. Each time, 30000 data points were
recorded. We selected the data set recorded for the net-
work R7, which is shown in Fig. 2. For our analysis, we
used the following set of coupling strengths: {0, 6, 11,
16, 21, 26, 31, 36, 41, 46, 51}; for stronger coupling the
circuits become phase synchronized and their phase dy-
namics does not change significantly from K = 51.

We show in Fig. 3 the time evolution of the 28 oscilla-
tors for different coupling strengths. As for the Izhikevich
neurons, we consider different levels of synchronization,
up to a phase synchronized state.

We define events by considering the crossings of the
x = 0 axis from x < 0. As in the neurons’ case, the
crossing times are linearly interpolated.
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Figure 2: Network R7 of electronic circuits [35] that has N = 28 circuits
(nodes) and 42 undirected links.

Figure 3: Oscillatory activity of 28 electronic circuits (in color code,
experimentally recorded x variable) when the circuits are (a) uncoupled
(K = 0), (b) weakly coupled (K = 1) and (c, d) strongly coupled (K = 10
and K = 50 respectively).

2.3. Phase description

From now on, we consider that the event times are the
only data available to reconstruct the network, that is, for
the neurons, we only know the spike times, and for the
electronic circuits, we only know the times of x = 0 cross-
ings. Interpreting each neuron/circuit as a phase oscilla-
tor, we associate a phase time series to each neuron/circuit
by assuming that the phase increases linearly by 2π be-
tween consecutive spikes/crossings [37].

An example of the procedure is shown in Fig. 4. Re-
garding time resolution of the phases, we decided to use
the model integration step for the neurons while, for the
electronic circuits, we downsampled the original time-
series to 1/5 of the measurement frequency, as we have
seen that this has little impact on the accuracy but, at the
same time, it speeds up the calculation significantly. Since
the Kalman filter is designed to assimilate noisy observa-

Figure 4: Example of a phase time series, ϕ(t), obtained from a voltage
time series, x(t). (a) x(t). (b) Spikes occur when x reaches the reset
condition (x > 30mV). (c) For each spike time, tn, we define the phase as
ϕ(tn) = 2nπ and interpolate linearly between consecutive spikes times.

tions, we added to the piece-wise linear phases a stochas-
tic term as a Gaussian white noise with variance σϕ. In
the analysis hereby we fixed σϕ = 0.12. We tested dif-
ferent values for σϕ and found that the UKF performance
is not significantly impacted if the noise intensity is not
too large. While further studies are needed to determine
the role of this parameter, our preliminary analysis sug-
gests that a large noise variance might decrease the UKF
performance.

2.4. UKF assimilation to the Kuramoto model
We assume that the phases’ dynamics can be described,

at least partially, in terms of a phase reduction equation of
the form

ϕ̇i = ω̄ +

N∑
j=1

mi jF(ϕ j, ϕi) + σiξi, (4)

with F being a periodic function of ϕi and ϕ j. A simple
option for F is F(ϕ j, ϕi) = sin(ϕ j − ϕi), which gives the
well-known Kuramoto model [33]:

ϕ̇i = ω̄ +

N∑
j=1

mi j sin(ϕ j − ϕi) + σiξi, (5)

where ω̄ is the natural frequency of the oscillators, which
is assumed to be the same for all oscillators, mi j = m ji

are symmetric coupling coefficients, ξi is a Gaussian noise
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term, and σi is the noise standard deviation, representing,
in the context of UKF, the uncertainty in the model used
to fit the data.

The Kuramoto model successfully describes coupled
phase oscillators; however, we remark that our approach
is flexible because another, more advanced model could
be used. For instance, in Eq.(5), non-instantaneous,
lagged interactions could have been considered; however,
this has the drawback that additional parameters need to
be estimated.

UKF is able to estimate the state of N phase oscillators,
denoted by ū = [ϕ1; ...; ϕN]T , by assimilating N phase
time series (defined from the spikes or event times) into
the Kuramoto model. Since our goal is to retrieve the os-
cillators’ connectivity, we extend the state of the system to
include the N(N − 1)/2 coupling parameters, mi j. There-
fore, the state vector, ū = [ϕ1; ...; ϕN ; m1,2; ...; mN−1,N]T , is
a vector of dimension M = N + N(N − 1)/2. Since the
network structure remains constant in time, the equations
governing the evolution of the coupling coefficients are
dmi j/dt = 0.

The natural frequency of the oscillators, ω̄, can be es-
timated as the average frequency of the oscillators when
they are uncoupled. However, this information might not
always be available; therefore, to demonstrate the general
applicability of our methodology, we estimate ω̄ for every
coupling strength, K, directly from the phases’ time series
as the average frequency of the oscillators. A comparison
of different ways to estimate ω̄ is presented in Appendix
A.

We implemented the UKF algorithm using the Python
package FilterPy, with parameters given in Table 2. To
initialize the algorithm, we have to choose initial condi-
tions for the state vector ū. For the phases, we used the
values at t = 0 while for the coupling coefficients, we set
them all to an initial value K0. The covariance matrices
associated with the process and measurement processes,
which are also evolved by the UKF algorithm, were ini-
tialized with the standard deviations σZ and σν. The co-
variance estimate matrix was initialized as IσP, where I
is an M × M identity matrix.

The UKF provides an estimation for ϕi, σi, and mi j at
each time. An example of the evolution of the inferred
coupling coefficients is presented in Fig. 5. Since the
inference at the last available time integrates the informa-
tion of all the other time steps, we consider the last es-

Table 2: Parameters used in the UKF algorithm [31, 38] for assimilat-
ing the phase time series of the neurons (of the chaotic circuits) to the
Kuramoto model.

K0 σZ σν σP α

0.1(0.05) 0.01(0.1) 0.05(0.15) 0.05(0.01) 0.0001

Figure 5: (a) Spike times of a random network of N = 6 Izhikevich
neurons with 8 links and coupling K = 0.04. (b) Inferred coupling coef-
ficients using the UKF. The blue lines represent the coefficients of exist-
ing links and the red lines, those of non-existing links.

timation of the mi j coefficients as the UKF estimation of
the coefficients.

We remark that the UKF approach is multivariate, in
the sense that the algorithm uses N ϕi(t) time series to
infer at once the mi j coefficients.

2.5. Network inference
To transform the set of mi j values returned by UKF

into an inferred binary adjacency matrix, we used a k-
means clustering algorithm [39, 40] that classifies the co-
efficients in three clusters. Other choices are possible, but
we found that three clusters is the minimum number that
gives good performance. The clustering algorithm puts
low coupling values in the first cluster, high values in the
second, and outliers in the third. The first cluster is in-
terpreted as composed by non-existing links (zeros in the
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adjacency matrix), while the other two clusters are inter-
preted as composed by existing links (ones in the adja-
cency matrix). Alternative approaches can be used to bi-
narize the coefficients mi j, which include, for instance, us-
ing a threshold defined in terms of the mean value and the
standard deviation of the mi j values.

2.6. Performance quantification

To evaluate the performance of the network reconstruc-
tion, for the neuron network we will use the F1 score [41],

F1 =
2T P

2T P + FN + FP
, (6)

where T P is the number of true positives, FP the number
of false positives, and FN the number of false negatives.
The F1 score represents the harmonic average between
two other scores: precision, which is the fraction of pre-
dicted links that are real links, and recall, which is the
fraction of real links recovered by the algorithm. There-
fore, a perfect reconstruction will have F1 = 1. Moreover,
being a harmonic average, a low value of one score (pre-
cision or recall) will give a low F1, regardless of the value
of the other score.

In the case of the 28 electronic circuits, we will evalu-
ate the performance in terms of the area under the receiver
operating characteristic curve (AUC). We use the AUC in-
stead of F1 because the clustering algorithm does not pro-
vide a good differentiation of the coefficients into existing
and non-existing links. An AUC= 1 means that there is
a threshold that can perfectly classify the inferred coeffi-
cients into high coefficients, representing links, and low
coefficients representing non-existing links. An AUC=
0.5, instead, represents the expected performance of a ran-
dom classifier.

We compare the UKF performance with the perfor-
mance of two bivariate link inference methods: the Pear-
son cross-correlation coefficient (CC) and the Mutual In-
formation (MI) [42]. We calculate CC and MI from the
phase times series, because we assume that we only know
the event times, from which we derive phase time series.
CCi j is calculated as:

CCi j =
1
T

∣∣∣∣∣∣ T∑
t=0

ai(t)a j(t)

∣∣∣∣∣∣ (7)

where ai(t) and a j(t) are the detrended and normalized (to
zero mean and unit variance) phase time series of oscilla-
tors i as j, and T is the length of the time series. MIi j is
calculated as

MIi j =

∫∫
pi j(ai, a j) log

pi j(ai, a j)
pi(ai)p j(a j)

daida j, (8)

where the probability distributions pi and p j are derived
from ai(t) and a j(t), and pi j is the joint distribution.

For simplicity, in Eqs. (7) and (8) we neglect a possi-
ble lag between ai and a j; taking into account a lag may
improve the reconstruction for weak coupling, while no
significant effect is expected at strong coupling because
the oscillators synchronize with zero lag.

The clustering procedure described in Sec. 2.5 for in-
ferring the network from the mi j coefficients returned by
UKF, will also be applied to the {CCi j} and {MIi j} values.

3. Results

3.1. Izhikevich neurons

The results obtained by applying the network inference
algorithms based on UKF, MI, and CC are displayed in
Fig. 6 as a function of the coupling strength K. Here, for
each K, we simulated 15 random networks with 6 neurons
and 8 links.

An F1 value was calculated for each reconstructed net-
work, and we used the 15 F1 values to compute the F1
statistics.

We can observe that, for weak and intermediate cou-
pling strengths, UKF tends to outperform the bivariate in-
ference based on MI or CC, whereas the three methods
perform similarly for strong coupling. An inspection of
the Kuramoto order parameter, R = ⟨| 1N

∑
k eiϕk(t)|⟩t, dis-

played in Fig. 7 reveals that the performance of UKF im-
proves with the coupling strength until the phases become
partially synchronized at about K ≃ 0.04, and afterward
the performance fluctuates around F1 ≃ 0.8. The syn-
chronization of the phases is never perfect (R < 1) and it
is not stationary, as shown by the shaded area representing
the interquartile range. This allows the algorithm to keep
a good performance even at relatively high K values [43].

We also note a large dispersion of F1 values for
the three inference methods, regardless of the coupling
strength. Perfect reconstruction of the adjacency matrix
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Figure 6: Performance of the inference methods based on UKF, MI, and CC as a function of the coupling strength, K, for a network of Izhikevich
neurons. Box-plot statistics are obtained by inferring 15 different network topologies of 6 nodes and 8 links. Black circles represent the average
score for each coupling coefficient.

Figure 7: Kuramoto order parameter of the phases of the Izhikevich neu-
rons vs. the coupling strength. Blue shading represents the interquartile
range while the blue markers represent the median; the parameters are
as in Fig. 6.

is, in general, not possible, as the F1 is usually less than
1, except for a few perfect reconstructions obtained with
the UKF algorithm.

To try to improve the performance of the inference
methods, we simulated the model a number of times, s,
with different initial conditions but the same adjacency
matrix. Alternatively, we could simulate long enough
time series and divide them into s non-overlapping seg-
ments.

From each set k (k = 1 . . . s) of spike sequences we de-
rived the phase time series and applied to them the UKF
algorithm, which returned the mk

i j coefficients of the kth
set, and we also calculated the corresponding CCk

i j and
MIk

i j values. Then, the network was reconstructed by ap-
plying the same clustering procedure as before, but to
⟨mi j⟩s, ⟨CCi j⟩s and ⟨MIi j⟩s, where ⟨. . . ⟩s = (

∑s
k=1 . . . )/s

represents the average over s simulations. Then, an F1
value was calculated for each reconstructed network. Re-
peating the procedure with 15 different coupling topolo-
gies, we obtained 15 F1 values that were used to compute
the F1 statistics.

The results are presented in Fig. 8, where the top (bot-
tom) row presents the F1 statistics for s = 36 (s = 99). We
can see that averaging the inferred coefficients improves
the UKF performance, whereas the performance of MI is
only slightly improved, and the CC performance is left
almost unaffected. However, despite the overall good per-
formance, UKF presents some negative outliers, even af-
ter averaging s = 99 inferred coefficients, while MI and
CC seem to be more robust. Examples of good and bad
UKF reconstructions are presented in Fig. 9, where panel
a) presents the real network, b) presents a good recon-
struction (F1 = 0.933), and c) presents a poor reconstruc-
tion (F1 = 0.5).

We have analyzed the reasons for the negative UKF
outliers and found that the mi j coefficients are correctly
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Figure 8: As Fig. 6 but the network is inferred from ⟨mi j⟩s, ⟨MIi j⟩s and ⟨CCi j⟩s averaged over s = 36 (a, b, c) or s = 99 (d, e, f) simulations.

ordered (the highest coefficients corresponding to exist-
ing links and the lowest coefficients, to missing links),
but the clustering algorithm does not find the right thresh-
old to separate them. As seen in Fig. 9(d), that displays
the Kuramoto order parameter (red line) together with the
degree of phase synchronization between three pairs of
nodes (black lines show R jk = | exp(i(ϕ j − ϕk)|) is above
the average of the network. In this situation, the clustering
algorithm puts these links in the “1” class and all the other
links in the “0” class, which results in a low F1 score.
For the specific network topologies in which this occurs,
UKF inference does not benefit from the averaging proce-
dure. While more work is needed to identify better clus-
tering strategies, we stress that UKF performance is low
for high enough coupling; for weaker coupling the recon-
struction can even be perfect, as seen in Fig. 8 (d), where
for K = 0.03 the 15 networks are perfectly reconstructed
(for K = 0.03 and s = 99, UKF F1 = 1).

It is important to note that, even though a general per-
formance improvement is expected from the averaging
procedure, as using more simulations provides more data
to infer the links, the efficiency with which the three meth-
ods leverage the new information is clearly different. We
speculate that the statistical similarity of the neurons’ time
series across various time series (or segments) is high,
leading to high correlations between the MI-based and
CC-based inferences obtained from different simulations,
leading to a small improvement or even no improvement
of their performance. On the other hand, providing a
model such as the Kuramoto model to the UKF allows us
to extract more information from small datasets, e. g. dis-
criminating small coupling from no coupling. These ar-
guments are of course heuristics and more work is needed
to understand the effect of the averaging procedure.

We compared the UKF performance when different
ways of estimating the natural frequency of the oscilla-
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Figure 9: Examples of good (b) and poor (c) UKF reconstruction of
the network shown in (a). In (b) and (c) the dashed lines indicate links
that were not inferred (false negatives). (d) Kuramoto order parameter
(red) vs. the coupling strength, and phase synchronization degree, R jk =

| exp(i(ϕ j − ϕk)|, for three pairs of nodes (1-2, 1-4, and 3-6) in black
which exhibit a higher degree of phase synchronization.

tors, ω̄, were used (see Appendix A). We found that
when the dynamics of the oscillators is highly regular (the
spike/crossing times are almost periodic), setting ω̄ = 0
gives the best performance. In addition, we analyzed the
effect of the network size and link density, the results are
presented in Appendix B. As could be expected, for all
methods, increasing the network size decreases the per-
formance. On the other hand, increasing the link density
facilitates the inference. Overall, UKF is the most precise
method (see Figs. A.14 and A.15 in Appendix B). The ef-
fect of the time series length is discussed in Appendix C,
where we show that, as expected, the performance of the
three methods decreases for shorter time series, but still
UKF yields the best performance. Finally, the computa-
tional cost of the algorithms as a function of the network
size is analyzed in Appendix D. Inevitably, the UKF has
the largest computational costs, and it increases rapidly
with the size of the network. This comes as no surprise
since the UKF is a multivariate estimator, while MI and
CC are bivariate measures.

Taken together, the results of the analysis of synthetic
spike sequences generated with the Izhikevich model in-

dicate that UKF is the optimal choice to reconstruct small
networks of weakly coupled neurons.

3.2. Chaotic electronic circuits
In this section, we present the results obtained for the

reconstruction of the network of 28 chaotic, Rössler-like
electronic circuits. As the time series have 30000 data
points (much longer than the length needed for UKF to
produce a stable inference), we divided the time series
into six non-overlapping segments so that each one con-
tains approximately 40 x = 0 crossing events, as in the
neurons’ case. Since, for each coupling strength, three
time series are available, we have 18 segments to analyze,
and therefore, we have 18 AUC values to compute the
score statistics. As explained in Sec. 2.6, we quantify per-
formance in terms of the AUC rather than F1 because the
clustering algorithm does not provide good differentiation
of the coefficients between existing and non-existing links
and this occurs not only for the mi j set, but also, for the
MIi j and CCi j sets.

As in the neurons’ case, we can also use the 18 seg-
ments to obtain 18 estimations of the values of mi j, MIi j

and CCi j, and we can average them to obtain the final es-
timations, i.e. to obtain the matrices ⟨mi j⟩s, ⟨MIi j⟩s and
⟨CCi j⟩s that are binarized to reconstruct the network.

Figure 10 displays the performance of UKF, MI, and
CC in the reconstruction of the network. For UKF recon-
struction, we have found that when the oscillators’ dy-
namics is highly regular, i.e., when the timing of x = 0
crossings is nearly periodic, the best UKF performance
is obtained by setting ω̄ = 0 (the influence of the esti-
mation of ω̄ is discussed in Appendix A). This occurs
when K ≥ 13 and, as it can be seen in Fig. 11 above this
coupling strength there is a large increase in phase syn-
chronization of the oscillators. Comparing Fig. 11 with
Fig. 7, which depicts the synchronization parameter for
the neurons, we notice that for the circuits the increase
in synchronization is accompanied by a decrease of the
temporal variance of the values of R, represented by the
shaded area. This reveals not only an increased phase syn-
chronization but also a small variance in time of the cir-
cuits’ phase dynamics. In contrast, for the phases of the
Izhikevich neurons, the increase of R with the coupling
strength is more gradual, and even for high values of R, its
variance remains high. An inspection of the time series of
the neurons’ phases reveals the existence of time intervals
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Figure 10: Performance of UKF, MI, and CC inference methods for the network of 28 chaotic electronic circuits. The horizontal axis displays the
coupling strength in arbitrary units. Box-plot statistics are obtained from 18 data segments and the black circles indicate the average score. The
solid lines represent the AUC when the network is inferred from ⟨mi j⟩s, ⟨MIi j⟩s and ⟨CCi j⟩s, where the average is over s = 18 non-overlapping
segments. The shaded area in panel a) represents the region where the oscillators have nearly identical frequencies and the best UKF performance
is obtained by selecting ω̄ = 0.

Figure 11: Kuramoto order parameter of the phases of the electronic
circuits vs. the coupling strength in arbitrary units. Magenta shading
represents the inter-quartile range while the magenta markers represent
the median.

where the neurons lose synchronization. We believe that
this difference may be, at least in part, responsible for the
different performance of UKF in the two systems.

We can see in Fig. 10 that the averaging procedure im-
proves the performance of both UKF and MI, while it
does not affect the CC performance, which remains poor.

We also note that MI’s performance is comparable to
UKF’s, but UKF performs slightly better for low cou-

pling. Specifically, UKF’s best performance is at K = 11,
and for this coupling strength, the best binarization thresh-
old gives, for UKF, F1 = 0.416, while for MI, F1 =

0.281. On the other hand, MI’s best performance is at
K = 41, and for this K, the best binarization threshold
gives, for UKF, F1 = 0.344, while for MI, F1 = 0.407.

At high enough coupling the better performance of MI
with respect to UKF may either be because the approxi-
mation of the function F(ϕ j, ϕi) in Eq. (4) by F(ϕ j, ϕi) =
sin(ϕ j − ϕi) is not appropriated (as discussed in Appendix
A) or because the phase description is not sufficiently pre-
cise and amplitude effects need to be taken into account.
To check this point, we inspected the shape of the recon-
structed attractor of an electronic circuit (using Takens
embedding, as only one of the three variables is avail-
able), as a function of the coupling strength, and found
that it continues to be phase coherent in the range of cou-
pling strengths analyzed, and approaches the shape of a
limit cycle for high couplings. Because we did not ob-
serve relevant variations in the amplitude of the oscilla-
tors, we believe that the phase description is still valid,
but the simple approximation of the function F is not.

The good performance of the UKF in terms of AUC
means that the inferred coefficients have the right relative
magnitude: on average, those corresponding to existing
links are larger than those corresponding to non-existing
links. However, further studies are needed to determine
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the optimal strategy to choose an appropriate threshold to
classify the ⟨mi j⟩s values in two distinct populations that
correlate as much as possible with the adjacency matrix.

4. Conclusions

Understanding the coupling structure of interacting
systems is an important open problem and many meth-
ods have been proposed to infer underlying interactions,
from the analysis of observed data. However, most meth-
ods require model information or a good knowledge of
the dynamics of the elements of the system. Here we
have proposed a model-free inference method that as-
sumes that the only information available are the times
when events such as spikes or threshold-crossings occur.
We have demonstrated the UKF-based method with simu-
lated neuronal spikes and with experimental data recorded
from chaotic electronic circuits, and compared its perfor-
mance with the performance of the mutual information,
and of the cross-correlation. Specifically, we have con-
sidered neural spike times simulated with the Izhikevich
model, and experimental data recorded from chaotic elec-
tronic circuits, consisting of the times when the circuits’
voltages change sign, from negative to positive values.
In both cases, we have used the event times (spikes or
threshold crossings) to obtain phase time series, and used
UKF to assimilate the phases’ time series to the Kuramoto
model.

On synthetic data from small neural networks, we have
found that averaging the UKF prediction over multiple
realizations can allow obtaining a perfect reconstruction
of the coupling topology. This averaging procedure also
benefits the inference when using MI and CC, but their
performance is in general lower than that of UKF.

In the experimental data, no method could fully recover
the network. We have found a comparable performance of
UKF and MI, with CC’s performance being significantly
lower. Both, UKF and MI benefit from the averaging pro-
cedure before inferring the network, with UKF perform-
ing better at weak coupling and MI performing better at
higher coupling.

The downside is that the improved performance of
UFK comes with a high computational cost, which makes
it unfeasible to use in the case of large networks.

We believe that the UKF method proposed here can be
very useful for inferring the topology of small networks of

coupled oscillators, when the oscillators can be approxi-
mately described as phase oscillators, because in this case
UKF may provide better performance than MI or CC.

Future work will be devoted to searching for a theo-
retical foundation to better understand the UKF perfor-
mance in the case of strong coupling, for which not only
the phase but also the amplitude dynamics may have to be
considered. In addition, we plan to test the UKF ability of
infer directed pulsed interactions such as chemical cou-
plings. It would also be interesting to analyze if a more
detailed, tailored phase model –instead of the generic Ku-
ramoto model– or if a more advanced phase-extraction
procedure (for example, using the Hilbert phase) could
improve the performance. It will also be interesting to
consider whether other methods to analyze the set of in-
ferred coupling coefficients (rather than k-means cluster-
ing) could lead to improved performance.
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Appendix A. Estimation of the average frequency ω̄

As explained in the main text, Sec. 2.4, we aim to as-
similate the phase time series to the Kuramoto model (Eq.
(5)) and an important step is to select the natural fre-
quency of the oscillators, ω̄. Here we discuss three meth-
ods to estimate ω̄ from the data and how they impact the
final result of the network inference.

Method 1. For each coupling strength Km, we estimate
ω̄ as ω̄Km = ϕ̄(t f )/t f , where ϕ̄(t) represents the average
phase of the N oscillators at time t f .

This method was used in Sec. 3.1 with the Izhikevich
neurons data and partially with the experimental data in
Sec. 3.2. As discussed in the main text, for the Rössler
data, this approach only works for small coupling. We
verified this in Fig. A.12(a), where we measure the recon-
struction accuracy in terms of AUC. As we can see, the
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Figure A.12: Comparison of the UKF performance with three methods
for estimating the average frequency ω̄, in colored lines. The grey lines
display the MI and CC performances. (a) For the electronic circuits,
AUC is used to quantify performance. (b) For the Izhikevich neurons,
F1 is used to quantify performance.

algorithm performance decreases as the coupling strength
increases beyond K = 11. On the contrary, in the case
of the Izhikevich neurons (b), the method displays good
performance.

An inspection of the distribution of the average inter-
event intervals (spikes or crossings) allows us to better
understand why the UKF method does not perform for
high coupling in the electronic circuits. As we see in
Fig. A.13(a), in the case of electronic circuits, for high
coupling, the intervals become nearly identical. Thus, all
circuits have approximately the same frequency, there is
no need for the coupling term

∑N
j=1 mi j sin(ϕ j − ϕi). In

other words, when the oscillators have very similar fre-
quencies, the model ϕ̇ = ω̄ is sufficient for the assimi-
lation of the data. In contrast, for a network of N = 6
Izhikevich neurons with 8 links, Fig. A.13(b), the distri-

Figure A.13: Distribution of average inter-event-intervals of the elec-
tronic circuits (a) and average inter-spike-intervals of a network of N = 6
Izhikevich neurons with 8 links (b) as a function of the coupling strength
K. The horizontal dashed line marks the average value at zero coupling.

bution of the average inter-spike intervals remains broad
in the range of coupling values considered. Hence, the
coupling term

∑N
j=1 mi j sin(ϕ j−ϕi) is needed to assimilate

the phase time series to the Kuramoto model. The same
behavior was observed in other neural networks.

Method 2. We select ω̄ as the average frequency com-
puted from the dynamics of the uncoupled oscillators
(K = 0). As we see in Fig. A.12, for low couplings the
UKF performance is not as good as with Method 1, but
it is stable around AUC = 0.75 for high coupling. The
drawback of this method is that it requires the availabil-
ity of data with no coupling. However, one can always
estimate ω̄ from the lowest coupling available.

Method 3. We assume that all the oscillators have a nat-
ural frequency ω̄ = 0. This means that Eq. (5) is reduced
to the coupling term. We see in Fig. A.12 that this method
performs similarly as Method 2, being slightly worse for
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Figure A.14: Performance of UKF, MI, and CC for Izhikevich neurons,
considering different network sizes. The values of p and K are such
that, for each network size N, the average Kuramoto order parameter is
R̄ = 0.85.

high coupling values.
Taken together, the results in Figs. A.12 and A.13 show

that, if the nodes (the neurons or the chaotic circuits) have
not identical frequencies, the UKF approach, estimating
ω̄ either with Methods 1, 2, or 3, generally outperforms
CC and MI.

As a final remark, ω̄ could have been an additional pa-
rameter to estimate using UKF, with the governing equa-
tion given by dω̄/dt = 0. However, we found that this
approach did not improve the performance.

Appendix B. Influence of the network size and link
density

Here we compare the results of the network inference
using UKF, MI, and CC for different network sizes N =
[6, 10, 16, 28] and link densities p = [0.5, 0.5, 0.25, 0.15].
For each set (N, p) we generated 50 random networks and
simulated the Izhikevich model with a coupling strength
K such that the networks have a similar level of synchro-
nization, as measured by the average Kuramoto order pa-
rameter, R̄ = 0.85. For each network, we calculated the F1
and averaged the result over the different networks. As the
computational cost of the UKF algorithm grows rapidly
(see Sec. Appendix D), we did not repeat the simulations
to estimate the F1 statistics.

The results are displayed in Fig. A.14. Although UKF
yields better results for all network sizes considered, we

Figure A.15: Performance of UKF, MI, and CC algorithms for two link
densities as a function of the coupling strength. Each curve represents
the F1 score averaged over the different networks and different trials. (a)
Results for link density p = 0.25 and 7 networks, (b) for p = 0.75 and 9
networks.

see that the performance of all three methods decreases as
N increases.

Regarding the role of the link density, p, we show in
Fig. A.15 the average F1 score for networks with low
and higher p. For p = 0.25, for low coupling K < 0.03,
the three methods have poor performance, with the MI
yielding the best results. For higher coupling, both UKF
and MI yield a generally good F1 score, with UKF being
the best method across the coupling range. For p = 0.75,
given the higher number of links (11), to be detected even
the CC yields a good result. It also comes as a result of
the clustering algorithm, which sets the highest values as
links. Again, here for weak coupling MI yields the best
results, while for higher coupling, UKF yields the best
performance.
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Figure C.16: Performance of UKF, MI, and CC as a function of the
coupling strength K for networks of N = 6 Izhikevich neurons, when
the time series length is (a) L = 10000, (b) L = 20000.

Appendix C. Influence of the length of the time series

In the main text, for Izhikevich neurons, we presented
results of the analysis of time series of L = 40000 data
points. Here, we report the results for shorter time series,
and therefore, for a smaller number of spikes. To do so,
we considered the same networks, coupling strengths, and
transient as in the main text, the only difference being the
length of the time series analyzed.

Figure C.16 display the F1 score (averaged over 50
simulations) for L = 20000 (a) and for L = 10000 (b).
In both cases, the UKF algorithm yields better results for
K ≥ 0.03.

Appendix D. Computational costs

Here we report a brief analysis of the computational
cost (tested on Intel Xeon Processor Skylake - 2.2GHz)

Figure D.17: Comparison of the computational time of UKF, MI and
CC algorithms for three network sizes, N. For each N, 20 networks with
link density p = 0.5 were used. Each boxplot represents the CPU time
required to infer mi j, MIi j, and CCi j.

of the network inference for different network sizes. The
results are shown in Fig. D.17, where for each network
size N, 20 networks with link density p = 0.5 were gen-
erated, and their dynamics were recorded in time series of
length L = 40000 points. The time spent by each algo-
rithm (UKF, MI, CC) to analyze the time series (without
counting the binarization of the output) was measured us-
ing the Python library time. As expected, CC and MI,
have a much smaller computational cost, since they only
measure pairwise relations between the N(N − 1)/2 pairs
of time series. Meanwhile, UKF analyzes N time se-
ries simultaneously, assimilating them to a model in or-
der to obtain the best fit for each model’s parameters. For
this reason, it requires a significantly longer time than the
other two algorithms.
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