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ABSTRACT

We study the dynamics of a multilayer network of chaotic oscillators subject to amplification. Previous studies have proven that multilayer
networks present phenomena such as synchronization, cluster, and chimera states. Here, we consider a network with two layers of Rössler
chaotic oscillators as well as applications to multilayer networks of the chaotic jerk and Liénard oscillators. Intra-layer coupling is considered
to be all to all in the case of Rössler oscillators, a ring for jerk oscillators and global mean field coupling in the case of Liénard, inter-layer
coupling is unidirectional in all these three cases. The second layer has an amplification coefficient. An in-depth study on the case of a network
of Rössler oscillators using a master stability function and order parameter leads to several phenomena such as complete synchronization,
generalized, cluster, and phase synchronization with amplification. For the case of Rössler oscillators, we note that there are also certain values
of coupling parameters and amplification where the synchronization does not exist or the synchronization can exist but without amplification.
Using other systems with different topologies, we obtain some interesting results such as chimera state with amplification, cluster state with
amplification, and complete synchronization with amplification.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0025529

The research on multilayer networks has attracted a lot of atten-
tion in recent years in many areas of physics, engineering, social
sciences, etc.1–6 Some emergent behaviors in such systems due to
interaction among the dynamical units reveal a variety of interest-
ing phenomena, such as synchronization,1,7,8 cluster formation,9

explosive synchronization,10 explosive desynchronization,11

chimera,12–16 etc. Among these, synchronization and chimeras
are the most widely studied. The notion of amplification
is very important in science and technology. This work
presents an investigation of different phenomena such as com-
plete synchronization, cluster formation, phase synchroniza-
tion, and chimera states in a network with amplification. For
an extended study, we present three cases with three different
topologies.

I. INTRODUCTION

The structure of many real-world problems in nature, engi-
neering, science, and technology is defined as a set of entities
interacting with each other in complicated patterns that can pro-
duce multiple types of relationships that change in time and exhibits
a plethora of emergent patterns or behaviors as synchronization,
chimeras, chaos, consensus, cooperation, to mention a few. One very
important ingredient behind most of those phenomena is the way in
which the particles or agents forming the systems interact, i.e., the
topology of the underlying network.

The network theory is used as an important tool for the mod-
eling of dynamical processes in complex systems.1,2,7 It also plays a
major role in the investigation of collective behavior. It finds many
applications in epidemiology where it is used to investigate epidemic
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spreading, in the industry where it is used in the control of behavior
of machines, in dynamics of populations with the control of the dis-
placement of the individuals, the cars, the drones, or the airplanes.
According to the these applications, we can mention that the main
objective is the controllability of the network to lead to a certain
state (it can be synchronization, cluster state, phase-flip, chimera
state, etc.).8,13,14,17–19 Thus, the investigation of the dynamics of the
networks needs the expertise of some mathematical tools such as
the Master Stability Function (MSF) developed by Pecora and Car-
roll, the transversal Lyapunov exponent, the correlation between the
oscillators of the same and of a different layer, etc. One of the best
methods to study the stability of the synchronization in the network
is the master stability function.20 This method is used for coupled
identical oscillators.

Many researchers are studying several phenomena that take
place in multiplex networks. Such an interest is motivated in under-
standing how the complete or partial synchronization occurs in
this type of systems and also because the topologies of multiplex
networks appear in several natural and technological systems. The
multiplex network may be described as being a collection of two or
more coupled networks where a set of networks is connected by links
where the interactions are of different types.21,22 These links charac-
terize the connections existing between any node and the network
of the multiplex network. Many recent works addressing multilayer
structures and systems were summarized in Ref. 23.

The study of inter-layer synchronization in non-identical mul-
tilayer networks was addressed in Ref. 24. The authors were able
to show an analytical treatment for a two-layer multiplex using the
master stability function method. One interesting outcome was to
predict the effect that missing links in one of the layers has on
the inter-layer synchronization. Later, in Ref. 25, it was found that
a sparse inhomogeneous second layer can promote chimera states
in a sparse homogeneous first layer. The study of synchronization
of non-identical multilayers is very recent, thus, many collective
behavior properties and patterns may unravel.

Here, we consider a network with two layers where we choose
an all-to-all coupling in the layer for the case of Rössler oscillators,
a ring with bidirectional coupling in each layer for the case of jerk
oscillators and a global mean field coupling for the last case men-
tioned above. The connection between the systems of both layers
(interlayer coupling) is unidirectional. The main goal of this work
is to investigate in each case the dynamics of each layer as well as
the whole network with amplification in the second layer. We found
the key values of the parameters to control synchronization with and
without amplification.

The remainder of this work is organized as follows. In Sec. II,
we present our multilayer network with the mathematical descrip-
tion of the model and the systems. The dynamics of the main case
is presented in Sec. III, emphasizing on the intralayer and interlayer
coupling in which numerical simulations are done. An application
to another two systems has been studied in Sec. IV, and finally, we
present the conclusions in Sec. V.

II. MULTILAYER NETWORK

The model consists of a multilayer network constituted of
N nodes connected in each layer, which can be represented by a

FIG. 1. Schematic representation of a network with two layers of interaction.

2N × 2N adjacency matrix Aij, where the elements of this matrix are,
respectively, 1 if the nodes i and j are connected and 0 if not. Based
on Ref. 25, the adjacency matrix of the whole network consisting of
two layers can be expressed as follows:

A =

(

A1 0
I A2

)

, (1)

where A1 and A2 are the N × N adjacency matrix modeling the
intralayer connectivity in the first and second layer, respectively. I
is an N × N identity matrix representing the unidirectional inter-
actions (Layer 1 → Layer 2) between the oscillators with the same
index in both layers. The use of the null matrix is justified by the
non-existence of a connection from the slave layer to the master
layer.

In the following, we consider a model of the multilayer network
constituted of N nodes in each layer connected using an all-to-all
coupling scheme in each layer (see Fig. 1). To each node corresponds
a nonlinear autonomous Rössler oscillator as described in Ref. 26.
Notice that it is this combined oscillator, which defines our network
as a two-layer system made up of a driving system and a slave one.

The dynamics of the first layer also considered as the driver
for the network is described by Eq. (2), where ε1 is the intra-layer
coupling strength for the first layer,
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The second layer has exactly the same intra-layer topology with
similar systems in the nodes. The choice of systems in the second
layer follows Louodop et al.27 where the authors show in Appendix A
that this form of coupling between elements of different layers pro-
duces generalized synchronization.27 Notice that it is this system
defined in Louodop et al.27 what defines which oscillators in layer 2
interact with those in layer 1, while keeping the same all-to-all intra-
layer topology. Therefore, the dynamics of the second or slave layer
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is given by Eq. (3),
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Here, ε2 is the intra-layer coupling strength and C0 is the interlayer
coupling strength. It is important to mention that this inter-layer
coupling exists only between the oscillators with the same index (i.e.,
for i = j, where the j index runs from 1 to N). C2 is the parameter
of proportionality named the amplification coefficient. This term or
interaction via a conjugate variable has been used in the literature
to model revival28,29 as well as amplitude death.30 For all these lay-
ers, we consider a = 0.36, b = 0.4, and c = 4.5, and we note that
at these values of the parameters, the systems operate in the chaotic
regime.26 This topology of connectivity between the master and slave
layers imposes generalized synchronization between both layers in
the absence of intralayer coupling because as it is conceived (see
Appendix A), the slave layer is supposed to function as an observer
of the master layer with certain conditions C2 6= 0. In this work,
we were interested in the notion of synchronization with amplifi-
cation (or reduction) depending on the value of C2. For C2 > 1, we
have amplification of the systems of the master layer (or a reduc-
tion of the systems of the slave layer) and conversely for C2 < 1. It
should be noted that when C2 takes negative values there is an anti-
synchronization between the systems of the master layer and those
of the slave layer having the same index. The amplification coeffi-
cient must be different from zero (C2 6= 0) and bounded because if
C2 = 0, the systems of the slave layer will diverge and if C2 is too
large, the slaving factor will tend to zero. Therefore, we keep C2 in
the interval between 0.005 and 2. This type of topology finds appli-
cations in many domains such as aircraft control where recently
they have proven that an optimal control permitted to regulate
the air traffic in the sky.31 Considering the domains of application
of this network topology, it seems rather important to investigate
the dynamics of this network with different parameters, which is
presented in Sec. III.

III. DYNAMICS OF NETWORKS

A. Dynamics of different layers

Considering the topology given in Fig. 1 and the mathematical
equations for both layers Eqs. (2) and (3), respectively, we are going
to investigate numerically the dynamics in the different layers using
the MSF described in Appendix B. A numerical calculation is done
using Runge–Kutta fourth order method for a long time simulation,
and the permanent solutions are considered at tmin = 0.6 tmax.

To illustrate the behavior of the oscillators of the first layer, we
present in Fig. 2(a) the master stability function or largest Lyapunov
exponent (LLE) of the variational equation (B10) used to character-
ize the stability of the synchronization in the first layer. In this figure,
there are two important regions in terms of characterization of the
stability of the synchronization: if LLE ≤ 0, the synchronization is
stable and if LLE > 0, the synchronization is unstable. By varying

smoothly the intralayer coupling ε1, this figure shows that when ε1

increases, the systems evolve to the synchronous state at ε1 = 0.009.
This synchronization is obtained at a minimal value of the coupling
strength in the first layer, and we note that the synchronization in
the slave layer is highly influenced not only by the coupling but
also by the amplification, this can be seen in the behavior of the
order parameter,32,33 which is plotted in Fig. 2(b) as a function of
ε1. The procedure to compute the order parameter is explained in
Appendix C. It should be noted that the notion of amplification here
is related to the amplitude of the oscillations of the state variables
of the systems. We are talking about synchronization with ampli-
fication if and only if the ratio X/Y = C2 is respected, as shown in
Appendix A. So, we investigate here the impact of the amplification
parameter on the dynamics of the network, where the order param-
eter of the slave layer is plotted for different values of C2. According
to this figure, although the interaction between the layers does not
impede synchronization in the slave layer, it becomes more effec-
tive for small values of C2. Based on the demonstration given in
Appendix A, synchronization occurs at Y = X

C2
. Therefore, when

C2 < 1, we obtain an amplification in the slave layer and, respec-
tively, a reduction in the master layer and vice versa when C2 > 1.
Thus, if we need to achieve synchronization in both layers at the
same value of the interlayer coupling, C2 must be very small, leading
to a significant amplification at the second layer. Also from Fig. 2(b),
we see that for the minimum value of C2 = 0.005, the synchro-
nization in both layers happens at the corresponding values of ε1

and ε2 (ε2 = 10ε1), this is represented in Fig. 2(b), where the order
parameter r1 and r2 for both layers is seen to reach the value for
complete synchronization at the same point. This value of C2 pro-
duces amplification of around 200 of all the variables of the master
layer (Y ≈ 200X) in the slave layer. In Fig. 2(c), we plot the mean
phase of the driver and the slave layer (the first 30 systems are for the
driver layer and the rest for the slave layer) for the value ε1 = 0.005
of the intralayer coupling. The situation shown here is confirmed
by Fig. 2(a) (LLE > 0). If we consider ε1 = 0.007, Fig. 2(a) shows
that the largest Lyapunov exponent is non-negative but very close to
zero, then in Fig. 2(d), we show the mean phase where the master
layer has a two cluster synchronization with equal phases.9,10,34–36 In
the slave layer, while the clusters follow the systems with the same
index as that of the master layer, we see an oblique sliding of the sys-
tems reminding of a splay state. To better appreciate the dynamics
of the oscillators in this behavior, we show in Fig. 2(g), the attractors
of the oscillators labeled 1, 6, 11, 16, 21, 26 in the master and slave
layers for C2 = 2 and ε1 = 0.007 (LLE ≥ 0). For ε1 = 0.009 (with
LLE < 0), we obtain Fig. 2(e), which represents the synchroniza-
tion in the first layer and a coherent oblique sliding in the second
layer. By computing the phase difference between consecutive oscil-
lators (here consecutive refers to the indices of the oscillators), we
verified that the phase distance between oscillators of the consecu-
tive index in the slave layer is constant; therefore, the second layer
presents indeed a phenomenon of splay.37,38 In Fig. 2(f), we show
for ε1 = 0.04, the phase synchronization in both layers but not at
the same value of the mean phase. So, for the multilayer network,
the dynamics is equivalent to that of two clusters. To illustrate the
dynamics of the system, we show in Fig. 2(h) the attractors of some
oscillators (labeled 1, 6, 11, 16, 21, 26) for ε1 = 0.04 to appreciate the
behavior of the entire network.
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FIG. 2. Dynamics of the two layers of the network: (a) master stability function of the first layer as a function of the intralayer coupling considering ε2 = 10ε1, C0 = 1, and
C2 = 2. (b) Order parameter showing the dynamics of the slave layer for different values of the amplification coefficient for ε2 = 10ε1 and C0 = 1. (c)–(f) Mean phase of
the first and second layer, respectively, for ε1 = 0.005, 0.007, 0.009, 0.04, C0 = 1 and C2 = 2. (g) Attractors of the oscillators 1, 6, 11, 16, 21, and 26 in the master and
slave layer for ε1 = 0.007. (h) Attractors of the oscillators 1, 6, 11, 16, 21, and 26 in the master and slave layer ε1 = 0.009, respectively. SiLl means system i of layer l
(i = 1, 2, . . . ,N and l = 1, 2).

Therefore, we can conclude that according to the different
values of the intralayer coupling, the network leads to different phe-
nomena such as cluster synchronization, splay, synchronization, and
the stability of this synchronization is confirmed by the MSF.

B. Impact of the interlayer coupling and amplification

on the dynamics of the network

In Sec. III A, we have shown the influence of the intralayer
coupling on the dynamics of the network. We see that the net-
work presents many phenomena depending on the amplification

coefficient C2 and the interlayer coupling C0. In this section, our goal
is twofold: first, we investigate the behavior of the network under the
impact of these two parameters and then we show the effect of the
amplification as well as its effectiveness in the network. We keep the
intra-coupling constants (ε1, ε2) fixed, varying smoothly the ampli-
fication coefficient (C2) from 0.005 to 2 and the inter-coupling (C0)
from 0 to 20.

As mentioned in Fig. 2(b), the synchronization in the slave
layer is imposed by the synchronization in the master layer. Accord-
ing to the literature,39,40 in order to bring our multilayer net-
work toward a desired behavior such as synchronization, cluster
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formation, splay, and so on, it suffices to adjust the coupling.
Although this is usually the case, in our system we have two impor-
tant parameters acting as interlayer couplings (C0 and C2) with the
difference that one of them (C2) allows us to increase or decrease the
amplitude of the signal in one of these layers. To illustrate the evo-
lution toward the synchronization as a function of the amplification
parameter C2 and the interlayer coupling C0 we show in Fig. 3(a)
the order parameter of the slave layer, since we are interested in syn-
chronization throughout the network. By considering the intralayer
coupling ε1 = 0.03 and ε2 = 0.25 all the oscillators of the first layer
are synchronized but due to the effects of the amplification param-
eter C2 and the interlayer coupling, the dynamics of the slave layer
cannot be the same. Therefore, the dynamics of the multilayer net-
work and particularly the slave layer is greatly affected by C0 and C2.
This can be observed in Fig. 3(a) where we plot the order parameter
of the second layer. In red we represent the region where synchro-
nization and amplification is obtained. We note that in this red zone
the relation X = C2Y is verified with a precision of 10−4, while in the
blue domain it is possible to obtain synchronization in the first layer
only but not in both layers of the networks.

This information is corroborated by the number of states of the
second layer shown in Fig. 3(b). This Fig. 3(b) confirms the order
parameter by presenting a number of states equal to one in the case
of synchronization (dark blue). When the order parameter is differ-
ent from one, the synchronization of all the systems in the network
is not achieved. At the moment, we can find partial synchronization
called cluster which is characterized by a number of independent
states of the network much less than the total number of elements.
Based on Fig. 3(b), we see a thin region with cluster formation in the
area of transition from synchronization to desynchronization and
vice versa.

To better highlight the impact of the amplification (C2) on
the transition to synchronization, we have presented the order
parameter of the multilayer network showing the transition to the
synchronous state for three values of the amplification C2 = 0.5,
C2 = 1 and C2 = 2, showed in Figs. 3(c)–3(e), respectively. Vary-
ing smoothly the intra- and interlayer coupling for these three fixed
values of C2, we have obtained different areas of synchronization of
the systems of the network. For these three figures, the first domain
(D1) represents the region where there is no synchronization in
any layer and the second domain (D2) where the synchronization
exists only in the first layer. The third domain (D3) represents the
zone of synchronization of both layers and the last domain (D4) is
showing the area where there is the divergence between the states
of the oscillators of the slave layer. Here, divergence means an infi-
nite amplification of the amplitude of the oscillations of the systems
of the slave layer leading to an explosion (y1, y2, y3 tend toward the
infinite). In summary, we notice that, the area of synchronization of
both layers increases when the amplification coefficient decreases.
So in Fig. 3(c) this zone of synchronization of both layers is the
largest domain (D3) and the zone (D2) where only the master layer
synchronizes is almost nonexistent. Therefore, when C2 increases, it
takes stronger values of the coupling in the master layer for the slave
layer to become synchronized as can be seen in Fig. 2(b). Figure 4
is used to confirm and to present the transition to the synchroniza-
tion using the Pearson correlation41 [defined by Eq. (4)] between the
first variables of each oscillator of both layers, the time series of the

FIG. 3. Network synchronization regions: (a) order parameter of the multilayer
network for ε1 = 0.03 and ε2 = 0.25 as a function C0 and C2. (b) Number of

states in the slave layer for ε1 = 0.03 and ε2 = 0.25 as function C0 and C2.
Two parameter phase diagram by simultaneously varying the intra-layer cou-
pling ε1 and inter-layer coupling C0 with ε2 = 10ε1 and for different values of
the amplification coefficient C2: (c) C2 = 0.5, (d) C2 = 1, and (e) C2 = 2.
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first variables of the oscillator labels 1 and 15 of both layers, and the
mean phase of the oscillators of the network,

ρ(x1, y1) =

∑N
i=1(x

1
i − x̄1)(y1

i − ȳ1)
√

∑N
i=1 (x

1
i − x̄1)

2
√

∑N
i=1 (y

1
i − ȳ1)

2
, (4)

where x̄1 =
∑N

i=1 x1
i and ȳ1 =

∑N
i=1 y1

i are the mean of the state vari-
ables x1

i and y1
i . In this paper, the color yellow used in the correlation

refers to the oscillators that synchronize and the color blue to those
that do not synchronize.

Figure 4(a) shows the correlation between the first variables of
the oscillators of the master and slave layer for C0 = 10 and C2 = 0.2
[these values are taken almost at the border of the separation of the
red and blue zone in Fig. 3(a)]. This figure presents yellow and blue
colors to identify those oscillators of the multilayer network that
synchronize and those who do not synchronize, respectively. In this
figure, the x-axis corresponds to the index used to identify the oscil-
lators of the master layer (i) and the y-axis corresponds to the index
used to identify the different oscillators of the slave layer (j). Accord-
ing to this figure, the first 14 oscillators of both layers synchronize.
To present in detail the situation, we plot in Fig. 4(b) the same fixed
values of the parameters and the mean phase for oscillators in both
layers, where labels 1–30 belong to the master layer and 30–60 to the
slave layer. Here, we notice two different groups in each layer: the
synchronous group (first 14 oscillators of each layer) and the asyn-
chronous group, so the transition to the synchronization is done by
cluster formation. To show the effect of the amplification for these
fixed values of parameters, we have in Fig. 4(c) the time series of
the variables for oscillators labels 1 and 15. This figure presents a
chaotic evolution of these variables as a function of time as well
as amplification, these effects of synchronization with amplification
are well appreciated in Figs. 4(d) and 4(f) for the oscillators indi-
cated in the axes. According to Fig. 4(a), the 15th oscillator of the
master layer and the 14th oscillator of the slave layer cannot syn-
chronize [see Fig. 4(e)]. At the end, to confirm the synchronization
with amplification in the multilayer network, we present in Fig. 4(g)
the correlation between the elements of both layers for C0 = 10 and
C2 = 1.55. This correlation shows the synchronization of the multi-
layer network, which can be appreciated in Fig. 4(h) where we plot
the mean phase for oscillators in both layers. The time series of the
oscillators 1 and 15 [Fig. 4(i)] show the amplification described in
Eq. (3). We can appreciate the synchronization with the amplifica-
tion of the multilayer network in the Figs. 4(j)–4(l), where complete
synchronization of some chosen oscillators is shown.

To appreciate the dynamics at the border of the separation of
the domain D3 and D4 of Fig. 3(e), we present in Fig. 5(a), the vari-
ation of the phase of all oscillators of the slave layer for C2 = 2,
ε1 = 0.065 721, ε2 = 10ε1, and interlayer coupling (C0) varying from
17.8 to 18.2. At this range of values of the interlayer coupling, the
slave layer presents different dynamics. Before C0 = 18, this slave
layer shows the synchronization of all oscillators of the slave layer.
After this synchronization, there follows a slight zone of disturbance
[the zoom is given in Fig. 5(b)] before the division into two groups,
which drives the layer toward the divergence. This abrupt change
presented reminds of an explosive desynchronization.11 Given the
form of the connection (unidirectionnal coupling) between the first

and second layers, the oscillators of the slave layer can only remain
synchronous and stable for a certain range of values of C0. This
dynamic leads the slave layer to the divergence that we observe in
Fig. 5(a) on the mean phase and in Fig. 5(c) with the order param-
eter. To understand more clearly the dynamics of the slave layer at
this value of interlayer coupling where we have the destruction of
the synchronization, we show in Figs. 5(d) and 5(e) the mean phase
of the multilayer network and the correlation between the oscilla-
tors of the slave layer, respectively. The mean phase presents a phase
synchronization of all the oscillators of the first layer, but in the slave
layer, we have two clusters formations. This cluster formation in the
slave layer is confirmed using the correlation between the oscillators
of the slave layer, and then we can appreciate the formation of these
two clusters by the yellow color.

IV. APPLICATIONS TO OTHER SYSTEMS

The behavior of a multilayer network shown in Secs. II and III
is not restricted to a system of Rössler oscillators, it can also be
obtained with other systems and topologies. In this section, we shall
study a network of jerk oscillators and another of Liénard oscilla-
tors with different topologies and show that they reproduce the same
behaviors.

A. Synchronization with amplification in a multilayer

network of jerk oscillators

Here, we investigate the dynamics of a multilayer network of
jerk50 chaotic oscillators where the first layer is described by Eq. (5),











ẋ1
i = I(x2

i )+ ε1(x
1
i+1 + x1

i−1 − 2x1
i ),

ẋ3
i = α(−x3

i + I(x2
i )),

ẋ3
i = β(−x2

i + x2
i − γ x3

i ).

(5)

The slave layer is described by Eq. (6)



















ẏ1
j =

I(x2
j )

C2

+ ε2(y
1
j+1 + y1

j−1 − 2y1
j )+ C0(x

1
j − C2y

1
j ),

ẏ2
j = α(−y3

j + I(x2
j )/C2),

ẏ3
j = β(−y1

j + y2
j − γ y3

j ).

(6)

Where the piecewise linear function is

I(x2) =

{

−x2 if x2 ≤ 1,
−1 otherwise.

(7)

α = 0.025, β = 0.765, γ = 0.0938 are the systems parameter. ε1 and
ε2 are the intralayer coupling strength of the drive and slave layer of
the network. The connection between the nodes of the same layer is
bidirectional, and they are arranged on a ring. Moreover, the con-
nection between the nodes of different layers is unidirectional and it
only concerns the oscillators with the same index in both layers.

Equations (5) and (6) were solved numerically considering
N = 30 jerk oscillators per layer with the systems parameter defined
above. Figure 6 is obtained for ε1 = 2, ε2 = 2, and C0 = 2. Two val-
ues for the amplification coefficient are considered: C2 = 0.5 and
C2 = 2. For C2 = 0.5, we can clearly appreciate in Fig. 6(a) the com-
plete phase synchronization of all oscillators in both layers. This
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FIG. 4. Dynamics of the multi-layer network for C0 and C2: (a) correlation between x
1
i and y

1
j (the yellow color indicates the oscillators in the synchronized state, and the

blue oscillators in an unsynchronized state). (b) Mean phase and (c) time series of some oscillators of the network for C2 = 0.2 and C0 = 10. SiLl means system i of the
layer l (i = 1, 2,. . . , N and l = 1, 2). (d)–(f) Synchronization between some oscillators in the first and second layers of the network for C2 = 0.2 and C0 = 10. (g) Correlation
between x1i and y

1
j . (h) Mean phase and (i) time series of some oscillators of the network for C2 = 1.55 and C0 = 10. (j)–(l) Synchronization between some oscillators in the

first and second layers of the network for C2 = 1.55 and C0 = 10. Figures (d)–(f) and (j)–(l) are special cases of the correlations presented in Figs. 4(b) and 4(g). However,
these figures even if they may confuse for being similar show that amplification clearly depends on the value of C2 and also show that in some cases, the synchronization of
oscillators of different indices is possible [see Figs. 4(d) and 4(k)].
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FIG. 5. Road to divergence: (a) Variation of the phases of the slave layer for
C2 = 2, ε1 = 0.065 721 and ε2 = 10ε1. (b) Zoom of the variation of the phases
of the slave layer forC2 = 2, ε1 = 0.065 721 and ε2 = 10ε1. (c) Order parameter
of the slave layer for C2 = 2, ε1 = 0.065 721 and ε2 = 10ε1. (d) Mean phase
of the oscillators of the network and (e) correlation between the oscillators of the
slave layer for ε1 = 0.065 721 and ε2 = 10ε1, C2 = 2 and C0 = 18. (The yellow
color indicates the oscillators that synchronize, and the blue color those that do
not synchronize.)

phase synchronization is a major condition to obtain amplification
in the systems of the network. As defined by our model, it emerges
that for these values of C2, the oscillators of the slave network are
supposed to be amplified compared to oscillators of the master layer
[see Figs. 6(b) and 6(c), where in red, we show the oscillators of the

FIG. 6. Dynamics of the two layers of the network of jerk oscillators, where the
master layer is represented in red and the slave layer in blue. For ε1 = ε2 = 2,
C0 = 5 andC2 = 0.5: (a) mean phase of the first and second layers, (b) attractors
of the oscillators in the master and slave layer, (c) time series of the oscillators of
the master and slave layer, and (d) synchronization between the oscillators of the
first and second layers in the network. For ε1 = ε2 = 2, C0 = 5 and C2 = 2: (e)
mean phase of the first and second layers, (f) attractors of the oscillators in the
master and slave layer, (g) time series of the oscillators of the first and second
layers, and (h) synchronization between the oscillators of the first and second
layers in the network.

master layer and in blue those of the slave layer]. The amplification
between the master and slave layers is perfectly observed in Fig. 6(d).
In the second case, we consider C2 = 2. As in the previous case, we
have phase synchronization between the oscillators of both layers
[see Fig. 6(e)]. For this value, we have amplification in the oscilla-
tors of the master layer [see Figs. 6(f) and 6(g)]. In the same vein,
we present in Fig. 6(h) the synchronization between the oscillators
in the first and second layers of the network.

Therefore, interlayer synchronization can be obtained with
amplification or reduction depending on the value of coefficient C2.

B. Chimera states with amplification in a multilayer

network of the Liénard system

Let us consider a network of Liénard systems expressed as in
Ref. 15, where the authors chose to investigate the dynamics of the
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FIG. 7. Examples of behavior of the multilayer network of Liénard systems.
Amplification for K = 0.9, ε1 = ε2 = −0.57, C2 = 0.5: (a) Snapshot of all the
oscillators of the multilayer network showing a multichimera state, (b) phase por-
trait of the oscillators j = 1 and j = 30 of both layers, and (c) and (d) temporal
dynamics of all the nodes in the first and second layers in the network. Reduction
for K = 0.9, ε1 = ε2 = −0.57, C2 = 2, (e) snapshot of all the oscillators of the
multilayer network showing a multichimera state, (f) phase portrait of the oscilla-
tors j = 1 and j = 30 of both layers and (g) and (h) temporal dynamics of all the
nodes in the first and second layers in the network.

oscillators basing themselves on an attractive and repulsive global
coupling. In the same vein, in Refs. 42 and 43, the authors present
some behavior such as clusters, pattern formation, synchronization,
and so on according to the attractive and repulsive coupling.

In this subsection, we consider the Liénard model with a
intralayer topology defined as in Ref. 15.

FIG. 8. Examples of the behavior of the multilayer network of Liénard systems.
Amplification for K = 1.5, ε1 = ε2 = −0.1, C2 = 0.5: (a) Snapshot of all the
oscillators of the multilayer network showing a cluster, (b) phase portrait of the
oscillators j = 1, j = 50, and j = 90 of both layers, and (c) and (d) temporal
dynamics of all the nodes in the first and second layers in the network. Reduc-
tion for K = 1.5, ε1 = ε2 = −0.17, C2 = 2. (e) Snapshot of all the oscillators of
the multilayer network showing a cluster, (f) phase portrait of the oscillators j = 1,
j = 50, and j = 70 of both layers, and (g) and (h) temporal dynamics of all the
nodes in the first and second layers in the network.

First or master layer,

{

ẋ1
i = x2

i ,

ẋ2
i = −αx1

i x
2
i − β(x1

i )
3
− γ x1

i + K
[(

x2 − x2
i

)

+ ε1

(

x1 − x1
i

)]

,

(8)
where x1 = 1

N

∑N
i=1 x1

i and x2 = 1
N

∑N
i=1 x2

i .
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Second or slave layer,
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with y1 = 1
N

∑N
i=1 y1

i and y2 = 1
N

∑N
i=1 y2

i .
The system’s parameters α, β , and γ are selected exactly as in

Ref. 15, K is the strength of coupling, ε1 and ε2 are the intralayer
global mean field coupling, and C2 is the amplification coefficient.
The coupling between the nodes of different layers is unidirectional
and it only concerns the oscillators with the same index in both
layers and N = 100 Liénard systems.

For the numerical simulation, we consider two cases, one where
the amplification is less than 1 (the systems of the slave layer are
amplified and the systems of the master layer are reduced) and
another when the amplification is greater than 1 (the systems of
the slave layer are reduced and the systems of the master layer are
amplified).

Figure 7 elaborates the chimera-I states based on Refs. 15
and 16. Figure 7(a) presents a snapshot of all the oscillators of both
layers of the network (the first 100 systems correspond to the mas-
ter layer and the rest is for the slave layer). This figure presents a
multichimera state in both master and slave layers [see Figs. 7(c)
and 7(d)] and a phase synchronization of both layers for K = 0.9,
ε1 = ε2 = −0.57, and C2 = 0.5. For the same parameters, we show
in Fig. 7(b), the attractor of the system for oscillator j = 1 in the
synchronization state and the attractor for j = 30 in the incoherent
state for both layers of the network (attractor red corresponds to the
master layer and attractor blue for the slave layer). At C2 = 0.5, the
systems of the slave layer are supposed to be amplified as in Fig. 7(b).
In the same vein, we present in Figs. 7(e)–7(h) for C2 = 2, the same
behaviors as in Figs. 7(a)–7(d). We observe the same behaviors
except that are the systems of the master layer, which are amplified
as X = 2Y.

Based on these results, we conclude that this form of coupling
can lead to a chimera or multichimera state with amplification or
reduction depending on the value of the amplification coefficient.

Let us now consider the following parameters K = 1.5
ε1 = ε2 = −0.1 that lead to a cluster formation and we choose two
values of amplification parameter: (a) C2 = 0.5 [see Figs. 8(a)–8(d)]
and (b) C2 = 2 [see Figs. 7(e)–7(h)]. According to these two cases,
we notice that this cluster state can be maintained with amplification
or reduction based on the value of C2.

V. CONCLUSION

Summarizing, we have studied and characterized numerically
the synchronization and the amplification of signals in a multi-
layer network of Rössler, jerk, or Liénard oscillators. Using tools
for studying synchronization in the network such as a master sta-
bility function, the order parameter, we have demonstrated that
the existence of synchronization in the second layer is conditioned
by the first. To obtain synchronization of both layers at the same
value of the intralayer coupling, the amplification coefficient must

be sufficiently low [see Fig. 2(b)]. The key role of amplification is
demonstrated by analyzing the order parameter of the first and sec-
ond layers. This parameter leads the network to different dynamics
such as cluster formation and synchronization.

From a theoretical point of view, this work contributes to the
advancement in the understanding of the phenomenon of synchro-
nization and amplification of signals between two coupled networks.
From a practical point of view, the results may be useful in many
technological applications. For example, in several mechanical sys-
tems, the transmission of movements or orders is done through
a driving belt or gear.44 Concerning this process, one of the most
important parameters is the transmission ratio, here represented by
C2, the amplification parameter. The amplification coefficient could
be the transmission ratio between gears or pulley-belt systems.45
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APPENDIX A: SYNCHRONIZATION CONDITIONS

We consider X(x1
i , x

2
i , x

3
i ) and Y(y1

i , y
2
i , y

3
i ), the state vector of

the ith oscillator of the first and second layer, respectively.
The dynamics of the first and second layers are given, respec-

tively, by


















ẋ1
i = −x2

i − x3
i + ε1

N
∑

k=1

A1
ik(x

1
k − x1

i ),

ẋ2
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and
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j +
x3

j x
1
j

C2

− cy3
j .

(A2)

Without any intralayer coupling (ε1 = ε2 = 0), both layers
could synchronize with amplification depending on C2.

We consider the synchronization error e = X − C2Y with
ε1 = ε2 = 0. So, the error dynamical system, which is obtained only
for a couple of systems with the same index in the first and second
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layers, is given by Eq. (A3)










ė1
i = −e2

i − e3
i − C2C0e

1
i ,

ė2
i = 0,

ė3
i = be1

i − ce3
i .

(A3)

To simplify the demonstration, we consider the Lyapunov
functions vi(i = 1, 2, . . . , N) of system pairs i and j (with i = j) of
the first and second layer described as follows:

vi =
1

2

(

(e1
i )

2
+ (e2

i )
2
+

1

b
(e3

i )
2

)

. (A4)

For any couple (X, Y), we choose the following Lyapunov
function candidate:

v =
1

2

(

(e1)
2
+ (e2)

2
+

1

b
(e3)

2

)

. (A5)

It is established (assuming a > 0, b > 0, and c > 0) that the sys-
tem defined by Eq. (A3) is practically stable since the time derivative
of the Lyapunov function in Eq. (A5) is bounded by a positive con-
stant. This also means that the error between the driver and response
systems is sufficiently small but different from zero and could be
considered as tolerance in the synchronization condition,46

v̇ ≤
(e2)

2

4c
. (A6)

For the whole network, the Lyapunov function candidate V can
be defined as a sum of vi,

V =

N
∑

i=1

vi. (A7)

Then, for the whole network, we can have

V̇ ≤

N
∑

i=1

(e2
i )

2

4c
. (A8)

Based on Eq. (A3), this boundedness is ensured by the fact
that e2

i (t) is constant due to the fact that ė2
i (t) = 0. Thereby, from

Eq. (A8) e → 0, X − C2Y = 0 and induce X = C2Y. we can obtain
amplification or reduction depending on the value of the coeffi-
cient C2.

APPENDIX B: PRELIMINARIES TO THE INVESTIGATION

OF THE DYNAMICS OF THE NETWORK: THE MASTER

STABILITY FUNCTION

A regular problem that arises when analyzing the dynamics of
a network is to find conditions that guarantee the synchronization
of a system of coupled identical nonlinear oscillators so that all the
oscillators converge asymptotically toward the same state.

The Master Stability Function (MSF) developed by Pecora and
Carroll20 constitutes one of the most useful tools to analyze the syn-
chronization stability of a system of coupled identical nonlinear
oscillators.1,20,47 We develop here only some points of the principal
idea of this method.

Considering a network of N identical coupled chaotic oscilla-
tors (or nodes), let xi be a vector with m components necessary to

describe the state of the ith node. In general, in the absence of any
interaction between the nodes of the network, the evolution of a
node is given by Eq. (B1),

ẋi = F(xi). (B1)

In this Eq. (B1), F is a function defined from R
m to R

m and is
used to define the local dynamics of the oscillators. To describe how
the oscillators evolve when they are connected in a network, we need
to consider not only the local dynamics presented at Eq. (B1), but
also how each node is affected by the ones to which it is connected.
So, the law governing the dynamical interaction of the ith node is
defined as

ẋi = F(xi)+ σ

N
∑

j=1

GijH(xj), (B2)

where σ is a coupling strength, H : R
m −→ R

m is an arbitrary out-
put function of each node’s variables used in the coupling. If we put
the network in a synchronized state, we have xi = s for all nodes,
where s is any m-dimensional vector. The only way all nodes have

the same behavior is to have the sum,
∑N

j=1 Gij, be the same for all

i. So, to obtain complete or identical synchronization, the row sums
of the coupling matrix must be the same for all rows. According to
Pecora and Carrol,20 we can collect the node dynamical variables,
functions, and coupling in

x = [x1, x2, . . . , xN] , (B3a)

F(x) = [F(x1), F(x2), . . . , F(xN)] , (B3b)

H(x) = [H(x1), H(x2), . . . , H(xN)] , (B3c)

and G be the matrix coupling coefficients Gij, then based on
Eqs. (B3a)–(B3c), Eq. (B2) can be written in a compact form as
follows:

ẋ = F(x)+ σG ⊗ H(x), (B4)

where ⊗ is the Kronecker product. So, according to the form of
Eq. (B2), we can rewrite Eq. (2) in the same form,

F(xi)
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i − x3
i ,

ẋ2
i = x1

i + ax2
i ,

ẋ3
i = bx1

i + x3
i (x

1
i − c).

(B5)

According to Ref. 20, for an all-to-all coupling scheme, the connec-
tivity matrix can be defined as in matrix G. To couple the nodes of
the layer, we choose x1 component and then matrix H can be defined
as in Eq. (B6),

H =





1 0 0
0 0 0
0 0 0



 ,

G =















1 − N 1 · · · 1 1 1
1 1 − N · · · 1 1 1
...

... · · ·
...

...
...

1 1 · · · 1 1 − N 1
1 1 · · · 1 1 1 − N















. (B6)
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The master stability function studies the stability of the global syn-
chronization in the network. Therefore, the synchronous state is
obtained when x1 = x2 = · · · = xN = s.

Suppose our system is synchronized and we perturb it so that
each node is, in general, slightly “away” from the synchronized
motion. Let us consider ξi a small perturbation of the ith node of
the network so that after perturbation xi = s + ξi. For N oscillators
of the first layer, the collections of the variations can be expressed
as ξ = (ξ1, ξ2, . . . , ξN). Now, we can derive an equation of motion
for the small perturbations that we will use to explore if the syn-
chronized state is unstable or stable. So, replacing the perturbation
xi = s + ξi in Eq. (B2) and using the Taylor theorem expand of
F(s + ξ i) and H(s + ξ i) to first order (since ξi is small), we have the
following variational equation:

ξ̇ i = DF(s)ξ i + σ

N
∑

j=1

GijDH(s)ξ j. (B7)

Using the tensor notation, we can write Eq. (B7) in a more
compact form,

ξ̇ =
[

1N ⊗ DF(s) + σG ⊗ DH(s)
]

ξ , (B8)

where 1N is the identity matrix of order N and DF and DH are the
N × N Jacobian matrices of the corresponding vector functions.

The solution of Eq. (B8) can be in the form ξi ∼ expµit. The
exponents µ tell us if the perturbation grows (µ > 0) or shrinks
(µ < 0), the former indicating a direction that is unstable and the
latter a stable direction. After diagonalization of the second term of
Eq. (B8), we obtain the variational equations which are diagonal in
the node coordinates and are now uncoupled and individually given
by

ξ̇ k =
[

DF(s) + σαkDH(s)
]

ξk, (B9)

where αk is an eigenvalue of G, k = 1, 2, . . . , N. For each k, the form
of each block of Eq. (B8) does not change, only the scalar multiplier
σαk differs for each block.

Therefore, these steps lead us to design the following master
stability equation:

ξ̇ =
[

DF(s) + σαDH(s)
]

ξ . (B10)

Computing the largest Lyapunov exponent of this master sta-
bility equation Eq. (B10), we obtain what Pecora and Carroll called
the master stability function and, therefore, we achieve a stable
synchronization state if the MSF turns negative.20,48,49

APPENDIX C: CALCULATION OF THE ORDER

PARAMETER

Collective behavior of such an N-oscillator system is conve-
niently described by the order parameter. The evaluation of this
order parameter12 used the phase of each oscillator of the network.
To define the phase let us consider an arbitrary signal s(τ ) with time
τ and its Hilbert transformation to be s̃(τ ), we have

ψ(τ) = s(τ )+ is̃(τ ) = R(τ ) expiφ(τ), (C1)

where R(τ ) is the amplitude and φ(τ) the phase of the variable s(τ ).
If the instantaneous phase is φi(τ ), it can be determined through the

following relation:

φi(τ ) = tan−1

[

s̃i(τ )

si(τ )

]

. (C2)

In this paper, the calculation of the phase was carried out using, in
each case, the variable that best describes the dynamics of the system.

Thus, from the expression of the phase φi, the mean phase φ is
an algebraic average calculated on the N oscillators of the layer. So,
for a network of N oscillators, the order parameter can be expressed
as

r =
1

N

N
∑

i=1

ejφi , (C3)

where j2 = −1, when r → 1, phase synchronization is reached and
when r ≈ 0, the network is desynchronized.
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ẍ2

)

+
...
x 1

)

,
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