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Abstract

In this manuscript, we study the dynamics of a modified relay-coupled
chaotic systems. The modification consists on the fact that the relay
unit is modeled to lead the entire network to a desired dynamics.
Then we achieve finite-time synchronization indirectly through a li-
near combination of the three systems. Further, we consider the
existence of a switch on time of the coupling from the relay unit to
the outer systems. It appears some interesting behaviors such as bi-
furcations, alternation of crisis and phases transitions when varied
the switch on time. An open result is also found. In our scheme and
for the selected changeable initial conditions, it seems that the ap-
pearance or disappearance of coexistence of attractors is linked to the
type of synchronization we are dealing with. Mathematical demon-
strations are given to sustain our theory while numerical simulations
show its effectiveness.

©2018 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

In Ref [1], the authors said that: An elegant way to enhance synchronization is the use of a relay
unit between the systems to be synchronized. In that paper, the authors gave a definition of relay
synchronization as a complete synchronization (CS) of two dynamical systems by indirect coupling
through a relay unit, whose dynamics does not necessary join the synchronous state. The interest for
studying relay-coupled systems comes from multiple applications in science and engineering. In 2004
E. Camacho et al. [2] were motivated by the presence of circadian rhythms in the chemistry of the eyes.
Although there was not direct connection between the two eyes in their model, they could mutually
influence each other by affecting the concentration of melatonin in the bloodstream which represented
the relay unit(that they called the bath). In ref. [1] the authors claimed that This type of network
module can be expected to exist, for instance, within the complex functional architecture of the brain.
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In addition, studying the collective behavior of the chaotic oscillators with environmental coupling, C.
Quintero-Quiroz and M. G. Cosenza in ref. [3] stated that Examples of such systems include chemical
and genetic oscillators where coupling is through exchange of chemicals with the surrounding medium.

In almost all papers on this topic, the authors are concentrated only on the investigation of the
behaviors of the relay-coupled systems simply by varying some parameters of the systems [1–5]. In the
present manuscript, we plan to generate the form or the mathematical model of the relay unit that
will always lead us to any desired behavior, for instance finite-time synchronization. For more synchro-
nization techniques, the drive and response systems or networks involved respond for time tending to
infinity. These methods are generally classified as asymptotic stability based synchronization [6–11].
Trying to attain fast convergence speed, powerful methods, including finite-time synchronization, have
been introduced and applied [12–16], where finite time synchronization refers to the identical evolution
of the interacting systems at a finite established time [17].

We think that to consider asymptotic stability based synchronization is far from the reality for
some systems, since they present a perfect synchronization within a finite time (example of eyes). In
addition, the finite-time stability is not an illusion since it is well applied in the domain of biological
systems for example (See refs. [18, 19]). In ref. [18] H. B. Oza et al. proposed a modified version of
the Michaelis-Menten function which led them to the possibility of modeling the naturally occurring
finite-time behavior of the healthy immune system. Basing ourselves on such an idea, we propose to
develop the expression of the relay units which can lead us to finite-time synchronization. To reach our
goal, we show that for systems coupled through a relay, one can develop a relationship between the
three systems such that relay synchronization becomes indirectly a finite-time relay synchronization.

This finite-time relay synchronization principle is that, it could exist a certain relationship between
the three systems such that the newly obtained system is finite-time stable. Given three dynamical
systems ẋ(t) = f (x(t)) and ż(t) = f (z(t)) the outer isolated systems and ẏ(t) = f0(y(t)) the relay unit, we
assume the existence of a fourth system ζ̇ (t) = g(ζ (t)) such that ζ (t) = x(t)−C1y(t)+ z(t)−C2y(t), is
Lipschitz continuous [20], where Ci, i= 1,2 are well chosen parameters which could be time dependent
depending on the goals. f0(·) is a new function derived from f (·). How is this derived will be shown in
the appendix. This means that the expressions of ẋ(t) and ż(t) without any control inputs in one hand
and the expression of ẏ(t) in other hand are really different. According to what we said before, we will
move from finite-time stability of the ζ ’ system to show the indirect finite-time synchronization of the
entire network. This is clear since the ζ ’ system is a linear combination of the others.

In this paper, we focus on the chaotic Rössler-like oscillator [4, 5]. Some advantages of this relay
synchronization scheme are that its stability could be easily shown and that the coupled systems and
the relay unit behave exactly as we need. Thus, this modified version of relay-coupling based synchro-
nization is useful due to its malleability. In addition, this study shows that the type of synchronization
is linked to the sign of the bound of the time derivative of the Lyapunov function.

The manuscript is organized as follows: in section 2, the theoretical analysis of the proposed scheme
is presented. We show that the derived system could be finite-time stable and we derive the expression of
the time of synchronization. Sections 3 and 4 are devoted to the dynamics of the entire coupled systems
in the finite-time synchronization and practical synchronization domains, respectively. Phenomena such
as interior and exterior crisis, intermittencies, phase synchrony, are investigated. We conclude in the
last section.

2 Theoretical analysis and stability

To present our strategy, we focus on the synchronization of three systems of Rössler oscillators [4]
coupled in an open-chain configuration shown by Fig. 1. The outer systems are X(τ) and Z(τ) while
the relay unit is Y (τ). The switches TC1 and TC2 are used to control the activation times of the couplings
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Fig. 1 Schematic representation of the relay connection. TC1 and TC2 are used to control the activation times of
the couplings in both directions Y (τ)→ X(τ) and Y (τ)→ Z(τ) respectively.

in both directions Y (τ)→X(τ) and Y (τ)→ Z(τ) respectively. The connection between the outer systems
is made through the relay which is not necessarily identical to them.

We shall follow Sharma et al. [4] who studied chaotic oscillators coupled in relay in absence of time
delay, with a series of synchronization phenomena. In the remaining of this paper, we shall study them
from the view point of finite-time synchronization. The system consists of Rössler oscillators where the
outer systems are described by:

ρ̇1 =−ωρ2− ε
(

ρ21 +ρ22
)

ρ2−ρ3, (1a)

ρ̇2 = ωρ1+a1ρ2+ ε
(

ρ21 +ρ22
)

ρ1− k1(τ)(ρ2−C1,2y2) , (1b)

ρ̇3 = a2+(ρ1− c)ρ3− k2 (ρ1−C1,2y1)− k3 (ρ3−C1,2y3) , (1c)

where ρ(τ) represents X(τ) or Z(τ), a1, a2, ω and c are system parameters and Ci, i= 1,2 are control
parameters such that C1 or C2 is used when ρ(τ) is X(τ) or Z(τ) respectively while the coupling
parameters ki, i = 2,3 are used to maintain the stability of the coupled systems. k1(τ) is the coupling
function which leads to finite-time synchrony. This coupling function is switched on on time TC1 or TC2 ,
depending of the outer system being connected to the relay, they will be considered as equal for the
time being and called TC. Hence TC becomes the time of activation of the finite-time based coupling
and expressed as follows

k1(τ) =

⎧

⎨

⎩

0 if τ ≤ TC,
η(θ −

p
(ρ2−C1,2y2)2+ ε

) otherwise, (2)

where θ ,η and p are constants to be defined by the designer and ε is a constant used to avoid the
division by zero. In what follows we consider TC = 0.

Our aim is to design the relay unit such that the outer systems X(τ) and Z(τ) synchronize in a
predetermined time. To do so, we construct a new system ζ through the following relationship

ζ = X(τ)−C1Y (τ)+Z(τ)−C2Y (τ), (3)

such that the obtained ζ ’s system is finite-time stable. Thus, if the ζ ’s system is finite-time stable, the
set of systems X(τ), Y (τ) and Z(τ) are also finite-time stable and then X(τ) and Z(τ) are finite-time
synchronized.

Basing ourselves on Eq.3, the relay unit system is written as follows (refer to the calculation in
appendix):

ẏ1 =−ωy2− y3−
ε
2
(

x21+ z21+ x22+ z22
)

y2−
ε

2(C1+C2)
(

z21+ z22− x21− x22
)

(x2− z2) , (4a)

ẏ2 = ωy1+a1y2+
ε
2
(

x21+ z21+ x22+ z22
)

y1+
ε

2(C1+C2)
(

z21+ z22− x21− x22
)

(x1− z1) , (4b)

ẏ3 =
2a2

C1+C2
− cy3+

1
2
(x1+ z1)y3+

1
2(C1+C2)

(x1− z1) (x3− z3) . (4c)
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If we suppose that the systems X(τ) and Z(τ) are synchronized then (ρ2−C1,2y2)2 = ζ2
4 . Thus, the new

system in ζ (τ) is :

ζ̇1 =−[ω+
ε
2
(x21+ z21+ x22+ z22)]ζ2−ζ3, (5a)

ζ̇2 = [ω+
ε
2
(x21+ z21+ x22+ z22)]ζ1+(a1− k1(τ))ζ2, (5b)

ζ̇3 =−k2ζ1+[
1
2
(x1+ z1)− c− k3]ζ3. (5c)

Let us show that the system Eq.(5) could be finite-time stable. We consider the following Lyapunov
function:

V (τ) =
1
2
(ζ 21 +ζ 22 +

ζ 23
|k2|

), (6)

Differentiating the Lyapunov function V (τ) with respect to time yields

V̇ (τ)≤− (ηθ −a1)ζ 22 +
4η p
ζ 22 + ε

ζ 22

−
ζ 23
k2

[k3+ c−Max(|
1
2
(x1+ z1)|)],

If k3 ≥Max(|
1
2
(x1+ z1)|)

and ηθ ≥a1
≤4η p.

(7)

It comes from here that the system Eq.(5) is finite-time stable if the control parameter p is negative.
Thus the stability time can be derived as in [21] by:

τS ≤ τ0+
V (τ0)
4η p

. (8)

The expression V̇ < 4η p with p ̸= 0 suggests that there are two domains of a possible existence of
synchronization. If p is negative, we deal with the finite-time synchronization domain. However, if p
is positive the coupled oscillators could be practically synchronized. Then, what will be the dynamics
of the relay-coupled systems in both domains? This is the topic of investigation in the next sections.

3 Finite-time synchronization domain p< 0

For all subsections, we use the following initial conditions and system’s parameters: (x1,x2,x3) =
(0.4,0.9,0.1), (y1,y2,y3)= (0.41,0.89,0.11) and (z1,z2,z3) = (0.34,0.93,0.12), a1= 0.15, a2= 0.4, ω = 0.41
and c= 8.5. In this section, the switches TC1 and TC2 have no significative effects then we consider them
to be zero.

3.1 Synchronization and anti-synchronization

First, we choose the values of parameters η = 1, p = −0.001, k2 = −1 and k3 = 10 and θ = 1.5 and
Ci = 1, i = 1,2. The Fig. (2)(a) and (b) give the chaotic attractors of the X− oscillator and the relay
unit in the plane (x2,x1) and (y2,y1) respectively, while the graphs on Fig. (2)(c) and (d) show the
synchronization between all the systems. However, if we consider a negative values of parameters
Ci, i = 1,2, we observe the synchronization between the outer systems and the anti-synchronization
between outer system and relay unit (see Fig. (2(e)-(f)).
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Fig. 2 Chaotic attractors in planes (a) (x1,x2) and (b) (y1,y2), (c) synchronization between the outer systems
and (d) synchronization and reduction between outer system and relay unit with C1 =C2 = 1, k1 = 1, k2 =−1 and
k3 = 10. (e) (x1,x2) and (f) (y1,y2), (g) synchronization between the outer systems and (h) anti-synchronization
with amplification between outer system and relay unit, with C1 =C2 =−0.1, k1 = 1, k2 =−1 and k3 = 10.

Fig. 3 Bifurcation diagrams for (a) ζ1 and (b) |z1(τ)− x1(τ)| as a function of the parameter C1 with C2 = 1.

Through simulations, we find that it appears a certain proportional relationship between the relay
unit with the outer systems when they synchronize. This relation could be expressed as follows

y1(τ) =Ωx1(τ), (9)

where Ω is a constant. This recalls the works by Ioan Grosu et al. in [22] where they design a
coupling for synchronization and amplification of chaos basing themselves on Lorenz systems. Let us
now investigate the origin of this relationship in Eq.9. For this goal, let us consider the following
bifurcation diagrams in Fig. 3.

The synchronization between the outer oscillators X(τ) and Z(τ) is obtained when C1 = C2 with
C2 = 1 since for that value of C1, ζ (τ) = 0 (see Fig. 3(a)). This conclusion is confirmed by the graph
on Fig. 3(b) where the difference e1(τ) = |z1(τ)− x1(τ)| is equal to zero at C1 = 1.
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(a) (b)

(c) (d)

Fig. 4 Interior crisis and behaviors of the systems (a) Bifurcation diagrams for x1(τ) as a function of the
parameter C1 with C2 = 1. The crisis is determined at around C1 = 0.2829 with C2 = 1. (b) Limit cycle with one
period of the system in the plane (z2(τ),z1(τ)) for C1 = 0.2829 with C2 = 1 (c) and (d) Chaotic attractor in the
plane in the plane (z2(τ),z1(τ)) and Time history of z1(τ) presenting intermittencies between two form of chaotic
signals for C1 = 0.2830 with C2 = 1.

Let us consider the relation Eq.3, it comes out that

Y (τ) =
X(τ)+Z(τ)−ζ (τ)

C1+C2
. (10)

According to Fig. 3, synchronization between X(τ) and Z(τ) means ζ (τ) = 0 and C1 =C2. Thus Eq.10
becomes

Y (τ) =
X(τ))
C1,2

. (11)

This implies that the constant of proportionality is expressed as follows

Ω=C1,2−1. (12)

We show that Ci with i= 1,2 lead to finite-time synchronization if they are equal(with p< 0). Howe-
ver, if they are not equal, the coupled systems show among many behaviors crisis-induced-intermittency.

3.2 Interior crisis and crisis-induced-intermittency

Even if p < 0, changing the value of C1 with C2 = 1 leads the systems through some behaviors such
as chaos, regularity and so on. Without getting into more details, we focus on the appearance of
the crisis and crisis-induced-intermittency. Crisis is a particular phenomenon described by the sudden
appearance or disappearance of a strange attractor as the parameters of the system are changing [23].
In particular, at the interior crisis or the second type of crisis the size of the chaotic attractor suddenly
increases [23]. In addition crisis-induced intermittency is described by the irregular alternation of
phases of different forms of chaotic dynamics [24, 25]. In our study, it appears that around the value
C1 = 0.2829 the systems present an interior crisis (see Fig. 4(a)) which is described by a transition
from one period limit cycle at C1 = 0.2829 (regularity Fig. 4(b)) to the crisis-induced-intermittency
C1 = 0.2830 Figs. 4(c) and (d). We shall see later on that they also appears in Fig. 5.

Contrary to the other works on relay-coupled systems such as in refs. [4, 5, 26], some interesting
properties of this scheme are: the simple and well defined control of the amplitude of the coupled
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Fig. 5 Intermittent behaviors between chaos and regularity of the systems versus TC. a) The system presents
many external (EC) and interior (IC) crisis. b) Synchronization (x(τ)− z(τ) = 0) and out-of-synchronization
(x(τ)− z(τ) ̸= 0) between outer systems X(τ) and Z(τ) ( black dots) and out-of-synchronization between the
outer system and the relay unit.

systems constituting the network (Eqs.(1) and (4)) by the husbandry of the parameters Ci, i= 1,2 (See
Eq.(11)) and the control of the synchronization time (See Eq.(8)).

4 Practical synchronization domain p> 0

In general, when the derivative of the Lyapunov function is positive, we consider that the system could
not stabilize. However, as shown by some references as [13, 27] some coupled oscillators can achieve
practical synchronization for which the time derivative of the Lyapunov function is bounded. This
means that the errors between the systems to synchronize (in the case of synchronization) are not
going down to zero but remain within a small volume [27]. Let us investigate the dynamics of our relay
coupled Rössler systems when p > 0 meaning V > 0 and V̇ > 0. In this second domain, the coupled
systems are sensitive to the influence of the switch TC of the coupling k1(τ). In what follows we fix
θ = 0.15 (See Eq.(2)).

4.1 Effects of the switch on time TC

4.1.1 Bifurcation diagrams

As mentioned, the switch TC is used to model the time of activation of the coupling between the relay
unit and one or both outer systems (See Fig1 and Eq.(2)). The influence of the switch on time TC is
described by the the following bifurcation diagrams for the initial conditions (x1,x2,x3) = (0.4,0.9,0.1),
(y1,y2,y3) = (0.41,0.89,0.11) and (z1,z2,z3) = (0.34,0.93,0.12) and the parameters η = 1 and p = 0.01.
These graphs show the intermittencies between chaos and regularity (or between interior (IC) and
exterior (EC) crisis) due to TC Fig. 5(a). The synchronization between the outer systems is shown
when (x(τ)− z(τ) = 0)(see Fig. 5(b)).

4.1.2 Coexistence of attractors

One of the surprising phenomena in nonlinear dynamics is the coexistence of attractors. This phe-
nomenon has been found in many systems [25, 28, 29]. We find that in the domain of practical sy-
nchronization, the systems are sensitive to variation in initial conditions. To confirm that, we use
the following graphs with the selected two sets of initial conditions INC1 : (x1,x2,x3) = (0.4,0.9,0.1),
(y1,y2,y3) = (0.41,0.89,0.11) and (z1,z2,z3) = (0.34,0.93,0.12) and INC2 : (x1,x2,x3) = (0.4,0.8,0.1),
(y1,y2,y3) = (0.26,0.89,0.11) and (z1,z2,z3) = (0.34,0.93,0.22) and the parameters η = 1 and p= 1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Different behaviors between chaos and regularity of the systems as a function of TC for the different
sets of initial conditions. a) Two superimposed bifurcation diagrams completely different for the same range of
TC INC1 in Black and INC2 in red. We observe an exchange between the behaviors described by INC1 chaotic
implies INC2 periodic or regular and vice versa. b) Coexistence of chaos (INC1 in red) and period one limit cycle
(INC2 in blue) for TC = 23.33. c) Coexistence of chaos (INC2 in blue) and period one limit cycle (INC1 in red)
for TC = 10. d) Coexistence of period two limit cycle (INC1 in red) and period one limit cycle (INC2 in blue) for
TC = 27. e) Identic behavior of the systems for the two set of initial conditions for TC = 34. f) Coexistence of
period two limit cycle (INC2 in blue) and period one limit cycle (INC1 in red) for TC = 50.

The difference in behavior can be described by the bifurcation diagrams given in Fig. 6(a) where
it appears an interchange between chaos for INC1 and regularity for INC2 and vice versa for a range
of TC. Some examples of coexistence are given by: chaos (INC1 in red) and period one limit cycle
(INC2 in blue) for TC = 23.33 (Fig. 6(b)), chaos (INC2 in blue) and period one limit cycle (INC1 in red)
for TC = 10(Fig. 6(c)), period two limit cycle (INC1 in red) and period one limit cycle (INC2 in blue)
for TC = 27(Fig. 6(d)) and period two limit cycle (INC2 in blue) and period one limit cycle (INC1 in
red) for TC = 50 (Fig. 6(f)). However, we found an identic behaviors of the oscillators for TC = 34 in
Fig. 6(e). Then according to these results, TC could be used to control the coexistence phenomena from
coexistence of different behaviors to identic behaviors.

The set of initial conditions, x2(0), y1(0) and z3(0), we choose to change with a view to observe
coexistence was selected randomly. Also there are other values which give other limit cycles.

4.1.3 Dynamics of phases

In this subsection, we consider a mismatch between the two switches TC1 and TC2 such that the dif-
ference is TC+ τη and TC2 = TC. This consideration is realistic and can find application in industry,
telecommunication and so on.

To compute the oscillator phases, we use the same procedure as in ref. [4, 30, 31]. Let us consider
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(a) (b)

(c)

Fig. 7 Phases differences between the oscillators for TC = 5, η = 1 and p = 1 a) The transitions from phase
locked to in-phase synchrony and to phase locked of the outer systems. When the outer systems are in-phase
synchrony they are out-of-phase synchrony with the relay oscillator. b) and c) Time histories of x1(τ) (blue lines),
y1(τ) (green lines) and z1(τ) (red lines) for τη = −5 and τη = 1 showing respectively the phase-locked between
the systems and the synchrony of the outer systems associate to the out-of-phase synchrony with the relay.

an arbitrary signal s(τ) with its Hilbert transform s̃(τ) such that a complex function can be defined as

ψ(τ) = s(τ)+ is̃(τ) = R(τ)expiφ(τ), (13)

where R(τ) is the amplitude and φ(τ) the phase of the variable s(τ). If the instantaneous phase is φi(τ),
we can determine it through the following relation

φi(τ) = tan−1[
s̃i(τ)
si(τ)

]. (14)

The phase of each oscillator is constructed from the variable with subscript i and the average phase
difference Φi j(τ) between two oscillators is

Φi j(τ) = ⟨|φi(τ)−φ j(τ)|⟩ f or i, j = x,y,z, (15)

where ⟨·⟩ denotes the time average.
Changing τη leads to phase synchronization between the outer systems when τη ∈ ]−2.65,2.195[

as shown in Fig. (7). Outside this interval the systems seem to be phase locked [30]. In addition it
is also interesting to see that the relay is out-of-phase synchrony with the outer systems when they
synchronized.

Surprisingly, the switch on time mismatches τη can be used as chaos controller as shown by the
bifurcation diagram and the Lyapunov exponent in Fig. 8 which show the evolution of the coupled
systems from period one limit cycle to chaos and later period one limit cycle. The transition from
regularity to chaos and vice versa are sudden which means that we are dealing with interior and
boundary or exterior crisis. The exterior crisis is recognized by the sudden destruction of the attractor
as the control parameter is varied [23]. In addition, the mutual influence of of τη and TC on the phase
synchrony is shown by Fig. (9). We find that that the synchronization is strongly linked to the values
of parameters of the couple (τη ,TC).
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Fig. 8 (a) and (b) Bifurcation diagram and Lyapunov exponent of system X(τ) for TC = 5, η = 1 and p = 1.
The transitions from regularity to chaos and later regularity is shown and confirms the result on phase transition
in Fig. (7).

Fig. 9 Blue zone shows the couple (τη ,TC) for which the outer systems are in-phase synchrony.

4.2 Mutual effects of p and TC

Let us focus on the mutual impact of the constants TC (Meaning TC1 and TC2 are equal) and p since
they are the real basis of our study in this manuscript. We express p as

p= 10n, where n ∈R. (16)

We fix η = 1 and varying TC and n for the set of initial conditions IC1. The graph in Fig. 10 gives the
phase differences between the oscillators for the couple of parameters (n,TC). Each color corresponds
to a zone where at least two of the three systems are in phase: in red zone all the three systems are
in-phase synchrony, only the oscillators X(τ) and Y (τ) synchronize in the blue area while only Z(τ) and
Y (τ) synchronize in the yellow area and just the outer systems synchronize in phase in the green zone.

5 Conclusion

The target of this manuscript is to investigate the possibility to achieve synchronization in finite-time
for a system of chaotic oscillators coupled through a relay unit. The investigations were carried out for
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Fig. 10 Zones of phase synchronization: red zone all the three systems are in-phase synchrony, the oscillators
X(τ) and Y (τ) synchronize in the blue area while Z(τ) and Y (τ) synchronize in the yellow area and The outer
systems only synchronize in phase in the green zone.

chaotic Rössler-like oscillators [4]. The coupling was built in such that the newly designed ζ ’s system
(Eq.(5)) becomes finite-time stable. The relationship between all systems recalls the one used in the
case of projective or functional projective synchronization [32,33]. Later we observed some interesting
behaviors in the coupled systems such as: synchronization between outer systems while the relay unit is
also synchronous with amplification of chaos, synchronization of outer systems while the relay unit anti-
synchronizes with the others, oscillations death in ζ ’s system (Eq.(5)) which characterizes the complete
synchronization between the outer systems, chaotic and non-chaotic behaviors of each system involving
in the relay-coupled model. In addition, the synchronization, amplification or reduction status can be
controlled through the parameters Ci, i= 1,2.

Surprisingly for this chaotic Rössler-like oscillator we found that the coexistence phenomenon ap-
pears only if we are in the practical synchronization domain where the time derivative of the Lyapunov
function is bounded by a positive constant. Also the switch TC of the coupling or it’s mismatch τη
and the constant p of the coupling could be used to control the appearance of many behaviors such as
intermittency, crisis, in-phase synchrony, chaos and so on.

Different from other works on relay-coupled systems, some interesting properties of this scheme are:
the control of the amplitude of the relay unit by the husbandry of the parameters Ci, i= 1,2, the control
of the synchronization time. However, the mathematical development done to obtain the suitable form
of the relay unit is tiresome in the general case. Also, the number of couplings used to achieve and
maintain the finite-time stability depend on the expression of the considered systems as shown by Eqs.1
and .A1 or .A2
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APPENDIX

Appendix: Development of the relay unit: Simple case of a 4D- hyperchaotic system

In this paragraph, we are going to show the development of the relay unit expression. For simplicity,
we base ourselves on the 4−D hyperchaotic system based on an extension of the diffusionless Lorenz
system studied by Li and Sprott in [34] where the steps to calculate the relay system are similar to
those of the Rössler system (Eq.1) although simpler. As said before, in this study the simplicity in
development is linked to the expression and the number of the nonlinear terms contained in the used
model. The 4−D hyperchaotic Lorenz system contains just two nonlinearities given as a products of
two of its variables in its second and third equations. In detail the outer systems are given as follows:

ẋ1 =x2− x1, (A1a)

ẋ2 =− x1x3+ x4− k1(τ)(x2−C1y2) , (A1b)

ẋ3 =x1x2−a1, (A1c)

ẋ4 =−a2x2, (A1d)

ż1 =z2− z1, (A2a)

ż2 =− z1z3+ z4− k1(τ)(z2−C2y2) , (A2b)

ż3 =z1z2−a1, (A2c)

ż4 =−a2z2, (A2d)

where k1(τ) is the coupling defined in Eq.(2). Now we search for a relation, Eq.(3), such that it fulfills
the conditions of finite-time synchronization as defined in Section 2. It appears that ζ̇1 = ζ2−ζ1 and
ζ̇4 =−a2ζ2,. The difficulty appears when dealing with nonlinearity. Here, the strategy is developed as
follows:

We initiate the relay unit as follows

ẏ1 =y2− y1, (A3a)

ẏ2 =−
1
2
(x1+ z1)y3+ y4, (A3b)

ẏ3 =
1
2
(x1+ z1)y2−a1, (A3c)

ẏ4 =−a2y2. (A3d)

Let us develop the second and the third equations of the ζ ’s system. One has

ζ̇2 =− k1(τ)ζ2+ζ4− x1x3− z1z3+
C1+C2
2

(x1+ z1)y3, (A4a)

ζ̇3 =x1x2+ z1z2−2a1+(C1+C2)a1−
C1+C2
2

(x1+ z1)y2. (A4b)
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If we add and subtract
1
2
x1z3 and

1
2
x3z1 in the first equation of system Eq.(A4) and

1
2
x1z2 and

1
2
x2z1

in its second equation, one has

ζ̇2 =− k1(τ)ζ2+ζ4−
1
2
(x1+ z1)ζ3−

1
2
(x1− z1) (x3− z3) , (A5a)

ζ̇3 =
1
2
(x1+ z1)ζ2+a1 (C1+C2−2)+

1
2
(x1− z1) (x2− z2) . (A5b)

At this stage, all term without any ζ have to be deleted in ζ ’s system. To do so, they have to be
introduced into the corresponding equations of the dynamics of the relay unit after a division by the
term 1

C1+C2 . Then we finally have the ζ ’s and the relay systems as given respectively by Eqs.(A6) and
(A7).

ζ̇1 =ζ2−ζ1, (A6a)

ζ̇2 =− k1(τ)ζ2+ζ4−
1
2
(x1+ z1)ζ3, (A6b)

ζ̇3 =
1
2
(x1+ z1)ζ2, (A6c)

ζ̇4 =−a2ζ2. (A6d)

ẏ1(τ) =y2(τ)− y1(τ), (A7a)

ẏ2(τ) =−
1
2
(x1(τ)+ z1(τ))y3(τ)+ y4(τ)−

1
2(C1+C2)

(x1(τ)− z1(τ))(x3(τ)− z3(τ)) , (A7b)

ẏ3(τ) =
1
2
(x1(τ)+ z1(τ))y2(τ)−

2
C1+C2

a1+
1

2(C1+C2)
(x1(τ)− z1(τ))(x2(τ)− z2(τ)) , (A7c)

ẏ4(τ) =−a2y2(τ). (A7d)


