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In this work we study the local coupled Kuramoto model with periodic boundary condi-
tions. Our main objective is to show how analytical solutions may be obtained from sym-
metry assumptions, and while we proceed on our endeavor we show apart from the
existence of local attractors, some unexpected features resulting from the symmetry prop-
erties, such as intermittent and chaotic period phase slips, degeneracy of stable solutions
and double bifurcation composition. As a result of our analysis, we show that stable fixed
points in the synchronized region may be obtained with just a small amount of the existent
solutions, and for a class of natural frequencies configuration we show analytical expres-
sions for the critical synchronization coupling as a function of the number of oscillators,
both exact and asymptotic.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear systems tend to surprise us with their behav-
ior contrary to what we expect from knowledge, intuition
and reasoning, even when the problem appears to be
rather simple, as the Kuramoto model [1] and its local ver-
sion, the locally coupled Kuramoto model (LCKM). The
applicability of the model for a variety of systems that
range from physics [2,3], data mining [4], neurosciences
[5,6], robotics [7], animal gaits [8,9], antennas [9] and oth-
ers make it important to understand the nature of unex-
pected results. Although the connection between the
LCKM and applications is reasonably well established, the
theoretical understanding is restricted to a few works
[3,10–18]. Recently we studied the LCKM above the syn-
chronization transition with periodic boundary conditions
[11]. On the other hand we found a richness in the solu-
tions which was not expected, mostly because intuition
tells us that a ring of oscillators should behave as a chain
for large systems. We studied how they are born and the
region of phase space where the solutions exist. The com-
plexity of the problem makes it extremely hard to analyze
therefore we shall start looking at small systems with
increasing difficulty to see if we can obtain some results
from which we can infer large N behavior, particularly
when symmetry in the frequency distributions is
assumed[19].

Our objective is to calculate the behavior of the solu-
tions for several cases where the distribution of frequen-
cies have well determined symmetries. We will study
how these solutions appear and follow them as the system
size increases. To do that we shall start with the smallest
system (N = 3) which has already received the attention
of Maistrenko et al. [20,21] and Ashwin et al. [22], and
we are going to increase the size in the search of general
properties. Obviously we shall not attempt to have an
encyclopedic coverage but will show the difficulties
encountered in solving the general problem with any arbi-
trary distribution. In doing so we have come across some
results on phase slip which happens at the transition to full
synchronization which seem to contradict previous results
for specific symmetries [13,14], which we shall discuss
along the text.
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The manuscript follows a route to show the loss of ana-
lyticity when one goes from small to large systems for
some specific symmetry classes. To accomplish that it is
organized as follows: the model is introduced in Section 2;
in Section 3 we study small systems. We start in Section 3
A with a well known case, that of three oscillators, where
we obtain for the first time the analytic result for the
dependence of the solutions on the coupling constant
above synchronization; after that, in Section 3 B, we con-
sider a symmetric N = 4 case and show a general method
for solving the equations for any number of oscillators,
along with its difficulties. In Section 4 we increase the sys-
tem size and impose specular symmetry, with two natural
frequencies. Under these constraints we discuss some
properties for this class using a system of N = 6 oscillators,
obtaining analytical results. The analyticity limits of the
model are explored in Section 5 when the frequencies are
obtained from a random distribution while keeping the
specular symmetry. In this case we present analytical solu-
tions only for Ks. In Section 6 we show some examples on
how organization on the natural frequencies may lead to
analytical (asymptotic) expressions for the critical syn-
chronization coupling. A summary of the results and some
possible further extensions are left for the final section.

Before ending the introduction we define some of the
notation used throughout the text. When treating the
bifurcations of the model we are not interested in classify-
ing them, but on the characterization of the fixed point’s
stability. With that in mind, although it may seem as if
we try to redefine well known bifurcations we name them
according to the type of fixed points created at them to
facilitate identification; for the fixed point classification,
we call a saddle every solution containing both positive
and negative eigenvalues of the Jacobian matrix and stable
(unstable) node when every eigenvalue is negative (posi-
tive), regardless of their imaginary parts.

2. Periodic boundary conditions: effects of symmetry

The LCKM under periodic boundary conditions presents
a rich landscape of solutions as discussed in reference [11].
From now on we shall follow the nomenclature used in
that reference. The system is described by the set of
equations:

_hn ¼ xn þ K½sinðhn�1 � hnÞ þ sinðhnþ1 � hnÞ�; ð1Þ

for n = 1, . . . ,N, where xn 2 {x}N is the set of natural fre-
quencies. The topology of the ring is defined by the condi-
tions hN+1 = h1 and h0 = hN. Alternatively, the system (1)
may also be written in terms of phase differences
/n = hn � hn+1,

_/n ¼ xn �xnþ1 þ K½sin /n�1 � 2 sin /n þ sin /nþ1�; ð2Þ

subject to the natural identity
PN

n¼1/n ¼ 0, with the peri-
odic boundary conditions satisfied by /0 = /N and
/N+1 = /1. Similarly to the case of the chain [23] there is a
minimum value of the coupling constant K for which the
system synchronizes to a common frequency
X ¼ 1

N

PN
j¼1xj. Under full synchronization the set of Eq.

(1) can be written as
X�xn

K
¼ sin /n�1 � sin /n; n ¼ 1; . . . ;N; ð3Þ

where /n = hn � hn+1. The condition for the phase differ-
ences /n(K, {x}) to lock depends on the number of oscilla-
tors N and the value of the coupling constant in the region
K P Ks (Ks is a unique fixed point that represents the onset
of synchronization). In the synchronized state every vari-
able /n can be written in terms of one /n� arbitrarily
chosen:

sin /n ¼ sin /n� þ
1
K

Xn�
j¼nþ1

ðX�xjÞ; ð4aÞ

for n = 1, . . . ,n⁄ � 1 and

sin /n ¼ sin /n� �
1
K

Xn

j¼n�þ1

ðX�xjÞ; ð4bÞ

for n = n⁄ + 1, . . . ,N � 1, as long as we keep the right hand
side on both equations in the interval [�1,1]. Since the
identity

PN
j¼1/j ¼ 0 allows us to write /N as a sum of all

the other phases /n, with n = 1, . . . ,N � 1, the set of Eq.
(3) is reduced to a single equation on two variables
/n� ;Kð Þ:

sin /n� þ
XN�1

n–n�
/n

 !
þ sin /n� ¼

Pn�

j¼1ðxj �XÞ
K

; ð5Þ

where /n are determined by Eqs. (4a) and (4b).
Ochab and Gora [18] found an equation similar to Eq.

(5) for the topology of a ring. They introduced a parameter
p = �sin (/N�1) and vary it in the interval [�1,1] to find
numerical solutions for different winding numbers. They
found only one branch of solutions for each winding num-
ber per K. In this work we treat only winding number
m = 0, which we showed in reference [11] that it has multi-
ple solutions above synchronization. The description of the
solutions Eq. (5) as a function of K is not a simple extension
of that of the chain since for the ring topology the equa-
tions for the phase differences are not independent. It is
necessary to analyze simple particular cases where the
small size, or particular symmetries, will give us a hint
on how to proceed to the general case of randomly selected
natural frequencies. This is what we shall do in the follow-
ing sections.

3. Small systems analysis

In this section we make an analysis of small systems,
particularly the N = 3 and N = 4. We show two approaches
for obtaining analytical solutions, and discuss some of the
problems within this description when extended to higher
number of oscillators. Unless specified on the text, from
now on the values assumed by arcsin (x) are to be consid-
ered only on the interval [�p/2,p/2].

3.1. First non trivial case: N = 3

The first non trivial case is a system of three oscillators
and natural frequencies x1 = �x3 = x and x2 = 0. Clearly
X = 0 and the synchronized region is described by:



Fig. 1. (a) Plot of the functions f I ¼ 1=KI
�ð/Þ where the stable solutions are shown in solid black lines and the unstable solutions in dashed lines and kI

�ð/Þ
(thin blue and red lines) for x = 1 and the symmetric N = 3 system defined by Eqs. (6). Saddle-(stable) node bifurcation at KI

þ ¼ Ks , the solutions are stable
on the left of the bifurcation and one of the solutions is unstable, on the right. At the minimum of KI

� there is a saddle-(unstable) node bifurcation. (b) For
fII = 1/KII(/) and kII

�ð/Þwe see a (saddle–saddle bifurcation at the minimum of KII(/)). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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sinð/1 þ /2Þ þ sin /1 ¼
x
K
; ð6aÞ

sin /2 � sin /1 ¼ 0: ð6bÞ

Since (6b) has only two solutions,

/I
2 ¼ /1; /II

2 ¼ p� /1; ð7Þ

it is possible to use only one phase difference /1 = / and re-
write (6) as a single equation K(/) for each solution:

KIð/Þ ¼ x
sin /þ sin 2/

; KIIð/Þ ¼ x
sin /

: ð8Þ

The function KII(/) has the same structure as a chain of
oscillators, with just a single minimum at KII = x with
sin/ = 1. On the other hand KI(/) has two minima for
K P 0. If we define z = sin/ these minima can be written
as KI

� ¼ f z��
� �

, i.e.:

KI
� ¼

x

z�� 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z�2�

p� � ; ð9Þ

where

z�þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15þ

ffiffiffiffiffiffi
33
p

32

s
; z�� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15�

ffiffiffiffiffiffi
33
p

32

s
: ð10Þ

Each of the three minima gives birth to a pair of solutions
for K P Ks, and their stability is characterized by the eigen-
values of the Jacobian matrix. When we write the equa-
tions of motion as a function of the phase differences

_/1 ¼ x� K½2 sin /1 � sin /2 þ sinð/1 þ /2Þ�; ð11aÞ
_/2 ¼ xþ K½sin /1 � 2 sin /2 � sinð/1 þ /2Þ�; ð11bÞ

the eigenvalues for each type of solution are defined by

kI
�ð/Þ ¼ K½�2 cos /� cos 2/� ðcos /� cos 2/Þ�; ð12Þ

kII
�ð/Þ ¼ K 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 cos2 /

p� �
: ð13Þ

To analyze the stability of the system, we plot the func-
tions f I ¼ 1=KI

�ð/Þ and fII = 1/KII(/), with the corresponding
eigenvalues of the Jacobian matrix versus / in Fig. 1. We
notice that the first maximum at KI
þ represents a saddle-

(stable) node bifurcation: two solutions are born, one sta-
ble with / ? 0 and one unstable with / ? 2p/3 in the limit
K ?1. The solutions generated at the minima KI

�
(Fig. 1(a)) and KII (Fig. 1(b)) are unstable, since the real part
of kI

� and kII
þ is always positive: KI

� is a saddle-(unstable)
node bifurcation and KII is a saddle–saddle bifurcation.

For this system with just a few oscillators it is not nec-
essary to impose symmetry properties on the natural fre-
quencies in order to obtain an analytical description of
the synchronized region. If we consider the natural fre-
quencies to be randomly chosen, it is always possible to as-
sign positive values to x1 and x2 and set x3 = �x1 �x2

(for X = 0). With this configuration the fixed point solu-
tions are described by the equations:

sinð/1 þ /2Þ þ sin /2 ¼
x1 þx2

K
; ð14aÞ

sin /1 � sin /2 ¼ �
x2

K
: ð14bÞ

A suitable manipulation of Eqs. (14) enable us to write a
single equation for /2,

sin2 /2½1� ðsin /2 �x2xÞ2�

¼ ½ðx1 þx2Þx� sin /2 � ðsin /2 �x2xÞ cos /2�
2
; ð15Þ

where x = K�1. Since (15) is a polynomial of second order in
x, we find solutions in the same fashion as Eq. (8), i.e., func-
tional forms K�1(/2) describing all the fixed points on the
synchronized region:

K�1
� ð/2Þ ¼

ðx1 þ 2x2Þ sin /2ð1þ cos /2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffi
kð/2Þ

p
x2

1 þ 2x2ðx1 þx2Þð1þ cos /2Þ
; ð16aÞ

kð/2Þ ¼ sin2 /2 x2
1 cos2 /2 þ 2x2ðx1 þx2Þð1þ cos /2Þ

� �
: ð16bÞ

For the symmetric case the fixed points are those shown in
Fig. 1.

It is now possible to see that the KII solutions are born
from the rightmost branch of KI (Fig. 2(a)), which lead to
the pitchfork bifurcation description by Maistrenko et al.
[20]. A general configuration of natural frequencies gener-
ates the structure of fixed points shown in Fig. 2(b), where
the maxima of K�1

� ð/2Þ appear separate, thus characteriz-
ing the presence of three bifurcations on the phase space.
Unfortunately, the analytic expression for Ks (x1,x2) does



Fig. 2. General solution K�1
� ð/2Þ representing the fixed points of the N = 3 system. Stable (unstable) branches are represented by solid (dashed) lines. (a)

Complete solution for the symmetric case shown in Fig. 1, where it is possible to see a pitchfork bifurcation at /2 = p/2. (b) General structure of the
synchronized region for a configuration of natural frequencies without symmetries: x1 = 1 and x2 = 1/2. The six fixed points solutions come from three
different bifurcations. The branches that correspond to K�1

� are indicated by arrows. The others branches correspond to K�1
þ .
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not admit a simple representation and to best of our
knowledge it has not yet been reported.

3.2. N = 4 with specular symmetry

Based on the same assumptions as the previous case,
we shall start analyzing the ring with N = 4 oscillators
where the configuration of frequencies follow a prescribed
symmetry. It is worth mentioning that Maistrenko et al.
[21] have already studied the case of N = 4 for the full con-
nected Kuramoto model. We treat here the case when the
oscillators present specular symmetry on the natural fre-
quencies, with x3 = �x2, x4 = �x1, and both x1 and x2

positives.
The symmetry in the equations imposes sin/1 = sin/3,

with solutions

/I
3 ¼ /1; /II

3 ¼ p� /1: ð17Þ

For the /II
3 case, the equations in the synchronized state,

sinðpþ /2Þ þ sin /1 ¼
x1

K
; sin /2 � sin /1 ¼

x2

K
; ð18Þ

permit the existence of a solution only if x2 = �x1. As this
case belongs to a more general scenario described in the
next section, we will consider only the /I

3 solution, whose
synchronized region is described by the equations:

sinð2/1 þ /2Þ þ sin /2 ¼
x1 þx2

K
; ð19aÞ

sin /2 � sin /1 ¼
x2

K
: ð19bÞ

After some manipulation, Eq. (19a) can be written as

sin2 /1ð1� sin2 /1Þð1� sin2 /2Þ

¼ x1 þx2

2K
� sin /2ð1� sin2 /1Þ

h i2

: ð20Þ

If we would like to search for a solution of the form K�1

(/2), as it was made in the case N = 3, Eq. (20) shows that
it is necessary to obtain the roots of a fourth order polyno-
mial. However, a more accurate investigation shows that if
we define z = sin/2, it is possible to write a third order
polynomial,
z3ðy2 � y1Þ � z2y2ð3y2 � 2y1Þ
þ z 3y3

2 � y1y2
2 þ y1 � y2

� �
� 1

4
4y4

2 � 3y2
2 þ y2

1 þ 2y1y2

� �
¼ 0; ð21Þ

where y1,2 = x1,2/K. On this slightly different approach,
the fixed point solutions come as the roots of Eq. (21),
namely,

r1ðKÞ¼
2x1x2�3x2

2

3Kðx1�x2Þ
þ4x2

1x2
2þ12K2ðx1�x2Þ2þK4f 2=3

0 ðKÞ
6K3ðx1�x2Þf 1=3

0 ðKÞ
; ð22aÞ

r�2 ðKÞ¼
2x1x2�3x2

2

3Kðx1�x2Þ

þ
�4 1� i

ffiffiffi
3
p� �

3K2ðx1�x2Þ2þx2
1x2

2

h i
þ �1� i

ffiffiffi
3
p� �

K4f 2=3
0 ðKÞ

12K3ðx1�x2Þf 1=3
0 ðKÞ

;

ð22bÞ

where the function f0(K) is defined by

f0ðKÞ ¼ f1ðKÞþ3
ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffi

f2ðKÞ
q

; ð23aÞ

f1ðKÞ ¼ �8
x3

1x3
2

K6 �9
ðx1 �x2Þ2 3x2

1 �2x1x2 þ3x2
2

� �
K4 ð23bÞ

f2ðKÞ ¼ 16
x3

1x3
2ðx1 �x2Þ4

K10

þ
ðx1 �x2Þ4 27x4

1 �36x3
1x2 þ2x2

1x2
2 �36x1x3

2 þ27x4
2

� �
K8

�64
ðx1 �x2Þ6

K6 : ð23cÞ

The roots r1(K) and r�2 ðKÞ give the locked solutions of
sin/2(K) for K P Ks, but as rþ2

		 		 is always greater than 1 this
root is not a valid representation of sin/2. From these solu-
tions it is possible to build a bifurcation diagram for the
system once we know the stability of the solutions. Bearing
in mind that we are searching for simple analytical expres-
sions, we will consider a reduction of the phase space
dynamics. With a proper set of initial conditions, i.e.,
/3(t = 0) = /1(t = 0), with /1(t = 0) and /2(t = 0) randomly
generated, the dynamics is set to occur in a 2-dimensional
symmetric manifold. Now, if we follow the same procedure
of the previous section and write the equations of motion
for the phase differences /n,
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_/1 ¼ x1 �x2 � K½2 sin /1 � sin /2 þ sinð2/1 þ /2Þ�; ð24aÞ
_/2 ¼ 2x2 þ 2ðsin /1 � sin /2Þ; ð24bÞ

we obtain a closed analytical expression for the eigen-
values of the Jacobian matrix,

k� ¼
s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4D
p

2
; ð25Þ

where the trace s and the determinant D of the matrix are
given by

s¼�2K cos/1½1þ2cosð/1þ/2Þ�; ð26aÞ

D¼�4K2 cos2 /1þ/2

2


 �
½1�cos2/1�2cosð/1þ/2Þ�: ð26bÞ

At this point we find a problem: the locked solutions are
given in terms of sin/2 while the eigenvalues of the Jaco-
bian depend on /1 and /2. A way out of this conflict can
be reached if one notices that for each root in (22) there
are two solutions for /2:

/I
2ðr1Þ ¼ arcsin r1; /II

2ðr1Þ ¼ p� arcsin r1; ð27aÞ
/I

2 r�2
� �

¼ arcsin r�2 ; /II
2 r�2
� �

¼ p� arcsin r�2 : ð27bÞ

Since r1 and r�2 do not depend on /1, it is necessary to go
back to Eqs. (19) to determine the dependency of /1 on
/2 for each solution of (27). A numerical analysis of the
equations shows that /1 ¼ arcsin sin /2 � x2

K

� �
leads to

the solutions /I
2ðr1Þ and /I

2 r�2
� �

, while
/1 ¼ p� arcsin sin /2 � x2

K

� �
corresponds to the comple-

mentary branches /II
2ðr1Þ and /II

2 r�2
� �

.
As a result of this analysis it is possible to observe that,

while the graph sin/2 � K shows Ks as a bifurcation giving
birth to two solutions (Fig. 3(a)), the identity sin/
= sin(p � /) implies that for each branch of sin/2 there
are actually two fixed points in the /2 � K space
(Fig. 3(b)). The unexpected (though straightforward) con-
clusion is the feature that the Ks bifurcation occurs simul-
taneously in two regions of the phase space, but the fixed
points do not share the stability properties: in the region
Fig. 3. Roots r1(K) and r�2 ðKÞ of (21) representing the bifurcation diagram in th
defined by Eqs. (19). Full (dashed) lines represent stable (unstable) solutions
bifurcation at Ks where two solutions are born: one stable with sin/2 ? 0 and an
showing the simultaneous birth of the solutions in different regions of phase s
(unstable) node for cos/2 < 0.
defined by cos/2 > 0 it bifurcates into one stable /I
2ðr1Þ

and one unstable branch /I
2 r�2
� �

, meanwhile for cos/2 < 0
it has two unstable solutions, a saddle /II

2 r�2
� �

and an unsta-
ble node /II

2ðr1Þ.
Now it becomes evident why we chose a reduced sub-

space for the dynamics: due to its lower dimensionality
it is possible to visualize the evolution of the nullclines
and the creation of the fixed points in the phase space, as
shown in Fig. 4. Just before the bifurcation at Ks it is possi-
ble to visualize the two simultaneous fixed points being
formed at (/1,/2) � (0.4,1) and (/1,/2) � (2.5,2.5)
(Fig. 4(a)). Fig. 4(b) (K > Ks) shows the stable node at
(/1,/2) � (0,0.5) and the saddle at (/1,/2) � (1,1.4) born
in the region cos/2 > 0, as well as the saddle at
(/1,/2) � (2.5,1.5) and the unstable node at
(/1,/2) � (3,2.5). In the limit K ?1 the stable node shifts
towards (0,0), the two saddles move towards (p/2,p/2) un-
til they merge into a unique saddle, and the unstable node
shifts in the direction of (p,p) (Fig. 4(c) and (d)).

For this specific system the reduced manifold contains
all the solutions of the complete 3-dimensional phase
space, and the stability of the fixed points does not suffer
any alteration when one reduces the dimension of the
dynamics. However this is not the general behavior for
the LCKM when symmetries on the natural frequencies
are taking into account, as we will show in the next
section.

The value of the coupling constant at the synchroniza-
tion transition can be obtained as the minimum of the
function K(sin/2) = K(z), such that @zKðzÞjz¼z� ¼ 0 implicitly
calculated in (21) gives two solutions

z�� ¼
x2ð2x1 � 3x2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1x2
2 þ 3K2ðx1 �x2Þ2

q
3Kðx1 �x2Þ

: ð28Þ

Once we take into account the two roots z�� in (21) we ob-
tain four solutions:

K�;�s ðx1;x2Þ ¼ �
1

8
ffiffiffi
2
p
jx1 �x2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�0 ðx1;x2Þ

q
; ð29Þ

where the function k�0 ðx1;x2Þ is defined as
e synchronized region for x1 = 1 and x2 = 1/3 for the system with N = 4
. (a) Bifurcation diagram projected on the space sin/2 � K showing the
other unstable with sin/2 ? 1 in the limit K ?1. (b) Bifurcation diagram
pace at Ks, a saddle-(stable) node in the region cos/2 > 0 and an saddle-



Fig. 4. Phase space showing the evolution of the fixed points as a function of K for a fixed configuration of natural frequencies x1 = 1 and x2 = 1/3 in the
system with N = 4. Black (thick) and blue (thin) lines correspond to _/1 ¼ 0 ð _/2 ¼ 0Þ. (a) K = 0.7: just before Ks, we can see the simultaneous bifurcations. (b)
K = 1.5: stable node and saddle created in the region with cos/2 > 0 (central part of the figure), and saddle and unstable node created in the region cos/2 < 0,
in the upper part of the figure. (c) K = 20.0: for large values of K the stable node moves towards (/1,/2) = (0,0), the two unstable saddles go towards (p/2,p/
2) to merge into a unique saddle. (d) In the limit K ?1, the unstable node moves towards (p,p) while the curves deform to be a saddle at (0,p), when
K ?1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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k�0 ðx1;x2Þ ¼ 27x4
1 � 9x3

1ð4x2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðx1;x2Þ

q
Þ

þx2x2
1 2x2 � 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðx1;x2Þ

q
 �

�x1x2
2 36x2 � 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðx1;x2Þ

q
 �

þ 9x3
2 3x2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðx1;x2Þ

q
 �
; ð30aÞ

k1ðx1;x2Þ ¼ 9x2
1 � 14x1x2 þ 9x2

2: ð30bÞ

For the case considered (x1 and x2 positive) the solutions
K�;þs are always complex conjugate pure imaginary num-
bers, and do not represent a physical solution. On the other
hand the solutions K�;�s are always real, but, since K�;�s is
always negative the critical coupling at synchronization
is given by

Ks ¼ Kþ;�s ðx1;x2Þ: ð31Þ

In the figures we have taken x1 = 1 and x2 = 1/3 for which
Ks � 0.734.

With this two examples of small systems (N = 3 and
N = 4) we gave a description of how analytical expressions
for the location of the fixed points and the critical synchro-
nization coupling may be obtained, which we summarize
here: starting from Eq. (5), if we make the trigonometric
expansion of the sin/N term into sines and cosines of all
the phase differences, then by squaring the two sides of
the equation (with subtle rearrangements of the terms) it
is possible to use Eqs. (4) t o write a polynomial equation
either for z ¼ sin /n� or x = K�1. Ultimately the fixed points
will come as the roots of the polynomial, and the critical
synchronization coupling Ks appears as the first minimum
of the function Kð/n� Þ, computed with respect to either /n�

or sin /n� , as long as /n� is chosen properly (for further
information about this point see [11]). The problem with
this approach is that the degree of the polynomial in-
creases with the number of oscillators, and for N P 5 the
degree is typically too high to obtain analytical roots. Nev-
ertheless if we make use of highly symmetrical configura-
tions of natural frequencies the behavior of the system
may be analytically explored to a large extent. This is the
task that we shall undertake in the next section.

4. Two natural frequencies

The simplest system with nontrivial behavior one may
consider is composed of only two natural frequencies.



Table 1
Solutions for each symmetric subspace and the respective bifurcation
points. The solutions /�2 ð/1Þ for each subspace (on the left) depend on
integer numbers n1,2. When the two solutions have the same bifurcation
points K� ;/�1

� �
, the subspace is completely symmetric with respect to /�2

(except for the stability), and the number of bifurcations is doubled.

Subspace U+++

/þ2 ¼ 2p
3 n1 � /1 n1 ¼ 0 ! K�;/�1

� �
¼ ðx=2;p=2Þ

n1 ¼ 1 ! K�;/�1
� �

¼ ðx;5p=6Þ
n1 ¼ �1 ! K�;/�1

� �
¼ ðx;p=6Þ

/�2 ¼ pð2n2 � 1Þ
�3/1 n2 ¼ 0!

K� ;/�1
� �

¼ ðx=2;p=2Þ
K� ;/�1
� �

� ð1:84;3:56Þ
K� ;/�1
� �

� ð1:84;�0:42Þ

8<
:

Subspaces U�++ and U++�

/þ2 ¼ 2pn1 � /1 n1 ¼ 0! K�;/�1
� �

¼ ðx=2;p=2Þ
/�2 ¼

pð2n2þ1Þ�/1
3

n2 ¼ 0 ! K�;/�1
� �

� ð1:84;1:88Þ
n2 ¼ 1 ! K�;/�1

� �
� ð1:84;1:26Þ

n2 ¼ 2 ! K�;/�1
� �

¼ ðx=2;p=2Þ

Subspace U+�+

/þ2 ¼ 3/1
/�2 ¼ p� 3/1

K�;/�1
� �

¼ ðx=2;p=2Þ
K�;/�1
� �

� ð1:84;�0:42Þ
K�;/�1
� �

� ð1:84;3:56Þ

Subspace U�+�

/þ2 ¼
2pn1þ/1

3
n1 ¼ 0 ! K�;/�1

� �
� ð1:84;1:26Þ

n1 ¼ 1 ! K�;/�1
� �

� ð1:84;1:88Þ
n1 ¼ �1 ! K�;/�1

� �
¼ ðx=2;p=2Þ

/�2 ¼ pð2n2 � 1Þ
þ/1

n2 ¼ 0! K�;/�1
� �

¼ ðx=2;p=2Þ

Subspaces U��+, U+�� and U���

/þ2 ¼ �/1
/�2 ¼ �pþ /1

K�;/�1
� �

¼ ðx=2;p=2Þ
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But as local coupled systems present a strong dependence
on the local configurations, we will get rid of the inhomo-
geneities by assuming an organized distribution of the nat-
ural frequencies:

xn ¼
x; for n odd
�x; for n even

�
ð32Þ

In the synchronized region the symmetry reduces the
equations to a set of constraints on the phase differences
/n,

sin /n ¼
sin /1; for n ¼ 3;5; . . . ;N � 1;
sin /2; for n ¼ 4;6; . . . ;N � 2:

�
; ð33Þ

while /1 and /2 satisfy

sin
XN�1

n¼odd

/nð/1Þ þ
XN�2

n¼even

/nð/2Þ
" #

þ sin /1 ¼
x
K
;ð34aÞ

sin /1 � sin /2 ¼
x
K
:ð34bÞ

A straightforward solution of this set corresponds to take
/n = /1 for n even, /n = /2 for n odd and /2 = �/1, such that
(34) can be written as

sin /1 ¼
x
2K

: ð35Þ

As this set of solutions (/n) maximizes the left hand side of
(34a), the critical synchronization coupling is determined
as the first solution of Eq. (35), i.e.,

Ks ¼
x
2
: ð36Þ

Although this specific choice of the phases gives a fixed
point solution valid for K P Ks, the synchronized region is
full with solutions obtained from combinations of
/þn ¼ /1;2 and /�n ¼ p� /1;2, in a way that a complete
description of the system involves all possible combina-
tions of the solutions to Eq. (33).

To obtain all the solutions (fixed points) with a pre-
scribed symmetry, we will explore the system’s symme-
tries to get the simplest description of the dynamics.
Since Eq. (33) tells us that there are two independent
phases, it is possible to consider proper initial conditions
/n(t = 0) that reduce the original (N � 1)-dimensional sys-
tem down to a 2-dimensional set of equations. If we define

/þn ¼
/1; for n ¼ 3;5; . . . ;N � 1;
/2; for n ¼ 4;6; . . . ;N � 2:

�
; ð37aÞ

/�n ¼
p� /1; for n ¼ 3;5; . . . ;N � 1;
p� /2; for n ¼ 4;6; . . . ;N � 2:

�
; ð37bÞ

the equations of motion are written as

_/1 ¼ 2x� Kð2 sin /1 � sin /2 þ sin UÞ; ð38aÞ
_/2 ¼ �2xþ 2Kðsin /1 � sin /2Þ; ð38bÞ

where

U 	 U�;�;...ð/1;/2Þ ¼ �/N

¼ /1 þ /2 þ
XN�1

n¼3;5;...

/�n ð/1Þ þ
XN�2

n¼4;6;...

/�n ð/2Þ; ð39Þ
defines each of the 2N�3 solutions that compose the /N

term, thus generating all the subspaces of the system.
The stability of the solutions is described by the eigen-
values of the Jacobian matrix

k� ¼
s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4D
p

2
; ð40Þ

where s, the trace and D, the determinant are defined by

s¼�K½2ðcos/1þcos/2ÞþcosU@/1 U�; ð41aÞ
D¼2K2½cosUðcos/2@/1 U�cos/1@/2 UÞþcos/1 cos/2�: ð41bÞ

Starting with a N = 6 system, the symmetrical subspaces
are defined by U±±± such that the Eq. (34a) has the follow-
ing representations in each subspace:

Uþþþ ! sinð3/1 þ 2/2Þ þ sin /1 ¼
x
K
; ð42aÞ

U�þþ

Uþþ�

)
! � sin /1 þ 2/2ð Þ þ sin /1 ¼

x
K
; ð42bÞ

Uþ�þ ! � sin 3/1 þ sin /1 ¼
x
K
; ð42cÞ

U�þ� ! sinð�/1 þ 2/2Þ þ sin /1 ¼
x
K
; ð42dÞ

U��þ

Uþ��

U���

9>=
>;! sin /1 ¼

x
2K

: ð42eÞ



Fig. 5. Bifurcation diagram K�1(/1) showing the solutions and their stability defined in the symmetric spaces for a system with N = 6 and x = 1. Solid
(dashed) lines represent stable (unstable) solutions. (a) Subspace U+++. (b) Subspace U�++. (c) Solutions /�2 of subspace U+�+. (d) Subspace U�+�.

P.F.C. Tilles et al. / Chaos, Solitons & Fractals 49 (2013) 32–46 39
Since the set (42) corresponds to all possible solutions of
Eq. (34a), every fixed point in the synchronized region
can be represented by the functions K�1(/1), obtained from
(42) and (32b). The solutions, with their corresponding
bifurcations point in each subspace represented by the pair
K�;/�1
� �

, are described in the Table 1 and illustrated in
Fig. 5 with x = 1.

An unexpected feature that comes from the symmetry
presented by the system concerns the characterization of
the critical coupling: our analysis shows that Ks is highly
degenerate, since each subspace has two bifurcations
responsible for the synchronization, a node–node bifurca-
tion (with opposite stabilities) coming from the /þ2 solu-
tions, always accompanied by a saddle–saddle or a
saddle-(unstable) node coming from the /�2 solutions. It
is important to notice that not only at Ks but at all values
of the coupling constant where new solutions are born
there exists the same composition of double bifurcations,
as can be observed in Fig. 5. The reason why this feature
comes as unexpected lies on the behavior of the system
Fig. 6. Time evolution of the instantaneous frequencies _h1ðtÞ and _h2ðtÞ just b
symmetry with two natural frequencies and x = 1. (a) For a set of initial conditio
Lyapunov exponent approximately equal to 0.03. (b) Time evolution of the insta
space and only eventually find the ghost of the bifurcation.
when no symmetries are present, since the critical cou-
pling was always obtained as a single bifurcation and the
presence of double bifurcations was not addressed.

Although the solutions found on the subspaces corre-
spond to all the fixed points of the system, the stability ob-
tained from the eigenvalues of the bidimensional Jacobian
matrix in Eq. (40) does not necessarily correspond to the
stability of the solutions in the complete phase space. Thus,
in order to know the complete stability of solutions it will
be necessary to analyze the eigenvalues from the (N � 1) �
(N � 1) Jacobian obtained from all the equations of motion
instead of the bidimensional set. After carrying out the
analysis on the fixed points born at Ks we observed the
existence of only one stable fixed point, originated from
U+++: the stable solution from /þ2 ðn1 ¼ 0Þ. All other fixed
points born at Ks were created from bifurcations saddle–
saddle like in the complete phase space.

The result of the stability analysis computed in the re-
gion slightly above Ks may be summarized as follows: from
a total of 32 solutions created from 16 different
elow synchronization (K = 0.499) for a system with N = 6 and specular
ns chaotic behavior of the time difference between slips is observed, with
ntaneous frequencies for a set of oscillators which wander around phase
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bifurcations (remember that there exist 8 subspaces of
symmetric solutions, each with two bifurcations), there is
one stable fixed point originated from node–node bifurca-
tions while the other 30 are saddles. If we consider a sys-
tem with such a large number of saddles and one stable
node, it would be only natural to expect an unusual behav-
ior. With that in mind, we analyzed the time evolution of
the instantaneous frequencies which is illustrated in
Fig. 6. When synchronization is about to happen
(K = 0.499) we expected to observe phase slips, with the
period between slips proportional to (Ks � K)a [23,13]. Sur-
prisingly what we observed here is a strong dependence on
the initial conditions: from some initial conditions the tra-
jectories of the oscillators pass near the regions where the
bifurcations appear, but as there are several possible bifur-
cations they get shifting from one to another (each produc-
ing a slip of a different strength) and the period between
phase slips behaves chaotically (Fig. 6(a)). To characterize
the behavior of this time difference between phase slips
we calculate the largest Lyapunov exponent k [24,25]
which was found to be approximately 0.03; at the same
time there are initial conditions that make the oscillators
wander around phase space and only eventually find a
neighborhood of a bifurcation, what does not necessarily
happen simultaneously for all oscillators, resulting on erra-
tic behavior and intermittent phase slips as seen in
Fig. 6(b). This unusual behavior is also observed for values
of K slightly above Ks not always finding the stable fixed
point in a reasonable time.

So far we have described the behavior of the system
prior to and on a neighborhood immediately after the on-
set of synchronization. Now we will extend the discussion
to the solutions in the synchronized region, that present
some peculiarities coming from the high density of solu-
tions. We shall focus our attention on the U++. . . subspace,
which present most (if not all) of the system’s features
and has a direct link to the system’s stability in the whole
phase space which will be explained in the next section.

For an arbitrary number N of oscillators, the U++. . . rep-
resentation of Eq. (34a) is given by

sin
N/1 þ ðN � 2Þ/2

2


 �
þ sin /1 ¼

x
K
: ð43Þ

Combining (43) with (34b), the variables /1 and /2 are re-
lated through the equation

sin
N/1 þ ðN � 2Þ/2

2


 �
¼ � sin /2; ð44Þ

which admits two types of solutions:

/þ2 ¼
4pm1

N
� /1; m1 ¼ 0;�1;�2; . . . ; ð45aÞ

/�2 ¼
2pð2m2 � 1Þ � N/1

N � 4
; m2 ¼ 0;1;2; . . . : ð45bÞ

For each type of solution (45) there exists a function
K�1
� ð/1Þ which describes the fixed points of the system,

K�1
þ ð/1;m1Þ ¼

1
x

sin /1 1þ cos
4pm1

N


 �
� cos /1 sin

4pm1

N


 �
; ð46aÞ

K�1
� ð/1;m2Þ ¼

1
x

sin
ðN � 2Þð2m2 � 1Þp� N/1

N � 4


 �
þ sin /1

� �
; ð46bÞ
where the minima @/1 K�ð/1Þj/1¼/�1
¼ 0 (maxima of K�1

� )
give the points /�m1

and /�m2
where the bifurcations occur,

tan /�m1
¼ �

1þ cos 4pm1
N

sin 4pm1
N

; ð47aÞ

cos /�m2
¼

N cos
ðN�2Þð2m2�1Þp�N/�m2

N�4

h i
N � 4

: ð47bÞ

Fig. 7(a) and (b) show the solutions K�1
þ ð/1;m1Þ and

K�1
� ð/1;m2Þ, respectively, with the stable branches in solid

lines for N = 10. The stability of the solutions is addressed
via the eigenvalues of the 2-dimensional Jacobian matrix,
and we see that the systems exhibits: saddle-(stable) node
bifurcations for m1 = 1 and 2, (stable) node-(unstable) node
for m1 = 0, saddle-(unstable) node for m1 = �1 and �2 for
the case K�1

þ ð/1;m1Þ. For the Fig. 7(b) we obtain: saddle-
(stable) node bifurcations for m1 = 0 and 2 on the left, sad-
dle-(unstable) node for m2 = 0 and 2 on the right, and a
saddle–saddle m2 = 1.

The first feature that draws attention in Fig. 7 is the
presence of changes in the stability of a given branch when
the coupling varies (see m1 = �1 and �2 and the left
branches for m2 = 0 and 2). From the real part of the eigen-
values (Fig. 8) we could see that k�(/1) is responsible for
the inversions: at the bifurcations of m1 = �1 and �2 the
fixed point is born as a saddle (Re[k+] < 0 and Re[k�] > 0),
but then it changes into a stable node at the point where
the real part of k� becomes negative (Fig. 8(a) and (b)).
For the bifurcations on the left of m2 = 0 and 2, shown in
Fig. 7(b), the real part of k� is positive and becomes nega-
tive after a given value of /1, where the saddles become
stable nodes (Fig. 8(c) and (d)).

The exact value of the points where the branches
change stability can be identified if we analyze all those
solutions simultaneously as in Fig. 9: the branch born from
the bifurcation on the left of m2 = 0 loses stability when it
touches the branch born at m1 = �1 for K � 0.764 with
/1 = p/10, which becomes stable when the coupling in-
creases (Fig. 9(a)); the same process occurs with the
branch coming from the bifurcation on the left of m2 = 2,
which exchanges stability with the m1 = �2 solution at
K � 5.236 and /1 = �3p/10 (Fig. 9(b)). The conclusion from
this analysis is that a transcritical bifurcation is indeed
responsible for the changes in the stability of the fixed
points.

Changes in the stability properties of the fixed points
occur in the stable as well as the unstable branches as
can be seen in the Fig. 8(c) and (d): at the saddle-(unstable)
node bifurcations on the right of m2 = 0 and m2 = 2, the
unstable nodes become saddles when the real part of k+ be-
comes negative. Since the solutions K�1

� ð/1Þ are symmetric
with respect to the /1 = p/2 axis, the mechanism which al-
ters the stability of those solutions is the same process as
described before, with the exchanging points given by
/1 = 9p/10 and /1 = 13p/10.

The stability exchange via a transcritical bifurcation
may also take place on the complete phase space of the
system, although the exchange is not necessarily made be-
tween solutions of the same subspaces. Therefore to obtain
all the stable solutions of the system, independent of the



Fig. 7. The plots of K�1
� ð/1;m1;2Þ representing the fixed points of the system synchronized region with two natural frequencies and N = 10. Solid lines

(dashed) represent stable fixed points (unstable). (a) Solutions of K�1
þ ð/1;m1Þwith bifurcations type node–node m1 = 0; saddle-(stable) node bifurcation for

m1 = 1 and m1 = 2, and saddle-(unstable) node for m1 = �1 and m1 = �2. (b) solutions K�1
� ð/1;m2Þ, with saddle–saddle bifurcations m2 = 1, saddle-(stable)

node bifurcation in the left of m2 = 0 and m2 = 2; saddle-(unstable) node bifurcation in the right of m2 = 0 and m2 = 2.
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size of their basins of attraction, it is necessary to obtain all
the points in space where two (or more) solutions collide
and to analyze the stability of those fixed points before
and after the collision (while at the same time the stability
of all the other solutions should be considered). Since the
number of solutions is exceedingly large to handle, even
for small systems, this type of symmetry may not be the
most enlightening choice to obtain a description of the
synchronized region in a simple (analytical) fashion. So in
the next section we will restrict our symmetry assump-
tions to more general cases, looking for the analyticity lim-
its of the model.

5. Specular symmetry

Let us consider an even number of oscillators with a
configuration of frequencies that satisfy the following
symmetry:

xN=2þn ¼ �xn; n ¼ 1; . . . ;N=2; ð48Þ

and also consider that all natural frequencies in the inter-
val [x1,xN/2] are positive. If we write the variables /n in
terms of /N/2,
sin /n ¼ sin /N=2 �
1
K

Xn�
j¼nþ1

xj; ð49aÞ

for n = 1, . . . ,N/2 � 1 and

sin /n ¼ sin /N=2 þ
1
K

Xn

j¼N=2þ1

xj; ð49bÞ

for n = N/2 + 1, . . . ,N � 1, the synchronized region is deter-
mined by the solutions of Eq. (5) in the form:

sin /N=2 � sin /Nð/N=2Þ ¼
PN=2

n¼1xn

K
: ð50Þ

From the analysis of the symmetry properties it is possible
to conclude that there is a solution of this equation with
/n+N/2 = �/n as long as sin/N = �sin/N/2. Since the last
identity maximizes the left hand side of Eq. (50), the criti-
cal synchronization coupling is given by

Ks ¼
PN=2

j¼1 xj

2
: ð51Þ

The determination of the critical coupling with this
symmetry is reduced to adding the first N/2 values of the



Fig. 8. Branches of solutions for the system with N = 10 and two natural frequencies, that have changed the stability by varying the strength of the coupling
K. Stable solutions (unstable) are represented by solid lines (dashed). Upper continuous curves (purple) represents the real part of k�(/1), and down curves
(blue) represent the real part of k+(/1). Figs. (a) and (b): bifurcations labeled by m1 = �1 and m1 = �2, respectively, showing that the solutions are born on
the right are saddles and become stable node when we the real part of k� becomes negative. Figs. (c) and (d): bifurcations labeled by m2 = 0 and m2 = 2,
respectively, showing that the solutions are born on the left are stable nodes and become saddles when the real part of k� becomes positive. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Region where solutions exchange stability via a transcritical bifurcation for the cases K�1
� ð/1Þ. (a) Stable node denoted by m2 = 0 loses stability to the

saddle denoted by m1 = �1 at the intersection of the solutions. (b) Stable node m2 = 2 loses stability to the saddle of m1 = �2 in intersection of the solutions.
Solid (dashed) lines correspond to stable (unstable) solutions. (Both figures are done for a system with two natural frequencies and N = 10).
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natural frequencies, therefore any prescription that we
choose to determine the natural frequencies xn(N)
(n = 1, . . . ,N/2) will allow us to obtain the dependence of
Ks on the size of the system N. For instance, if we consider
a general case where the frequencies in the interval
[x1,xN/2] are obtained from a uniform distribution defined
on the interval [a,b], with a > 0 and b > a, it is easy to com-
pute the mean of Ks(N) and the standard deviation from Eq.
(51):

hKsðNÞi ¼
aþ b

8
N; r½KsðNÞ� ¼

b� a

4
ffiffiffi
6
p

ffiffiffiffi
N
p

: ð52Þ

These results are corroborated by the simulation as illus-
trated in Fig. 10. A statistical study of the solutions for
the local Kuramoto model with quenched disorder has
not yet been addressed in the literature. Here we show
the average critical coupled strength Ks when the random
field have specular symmetry. The analytical solutions for
this systems depends on the possibility to identify the
maximum sequential sum of the frequencies inside the
ring [11]. Analytical solutions for Ks can be obtained for
all symmetries that allow this identification.

Although the imposition of the symmetry defined in
(48) on the set of natural frequencies allowed us to deter-
mine Ks analytically, there is still the problem of finding all
the solutions in the synchronized region. The selection of
the phase difference /N/2 as the independent variable war-
rants that no sum in the Eqs. (49) will be larger than the
sum on the right hand side of (50). From this we infer that
there exists a region of values of K such that the set Eqs.
(49) has a solution (the right hand side of each equation al-
ways belongs to the interval [�1,1]) while /N/2 does not
satisfy (50). This means that all the solutions in the syn-
chronized region exist after a value K = Ks which guaran-
tees the existence of a solution for Eq. (50), while in the



Fig. 10. Left: behavior of hKs(N)i for natural frequencies generated by a uniform distribution with a = 0 and b = 1 and systems with specular symmetry.
Right: standard deviation r[Ks(N)] from the numeric outcome in logarithmic scale. The dots correspond to the result obtained through the simulation, with
average obtained from 1000 instances. The black line correspond to the curve calculated via (52).
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synchronized region (K P Ks) the solutions of the form /N/

2(K) correspond to the fixed points of the system.
To get all the solution in terms of /n(/N/2) we have to

consider the Eqs. (49) that define relations between the
phases, thus all possible combinations:

/þn ¼ arcsin sin /N=2 �
1
K

Xn�
j¼nþ1

xj

 !
; ð53aÞ

/�n ¼ p� arcsin sin /N=2 �
1
K

Xn�
j¼nþ1

xj

 !
; ð53bÞ

for n = 1, . . . ,N/2 � 1, and

/þn ¼ arcsin sin /N=2 þ
1
K

Xn

j¼N=2þ1

xj

 !
; ð53cÞ

/�n ¼ p� arcsin sin /N=2 þ
1
K

Xn

j¼N=2þ1

xj

 !
; ð53dÞ

for n = N/2 + 1, . . . ,N � 1, should be considered a priori.1 In
order to correctly describe the systems we shall start with
simple frequency configurations.

The simplest configuration of frequencies satisfying the
symmetry (48) is xn = x for n = 1, . . . ,N/2, with critical cou-
pling given by

KsðNÞ ¼
xN

4
: ð54Þ

If we consider a small system N = 6, all 2N�2 = 16 combina-
tions of the kind of solutions Eq. (53) may be considered to
solve (50) numerically, as shown in Fig. 11(a). Even though
it is possible to determine all solutions for /N/2 = /3 above
Ks, the high symmetry level presents the same problem of
degeneracies in the /N/2 � K space found in the previous
section: there are several values of phase locking /1, /2,
/4 and /5 which lead to the same result for /3. In larger
systems the process of assigning an observed fixed point
to a phase locked solution is practically impossible. How-
ever there is no need for special prescription for the natural
1 A certain amount of care should be considered when dealing with Eq.
(53): the solutions /�n were written as p � arcsin(⁄) just for a easier
presentation. It is necessary to know the quadrant where the argument is
located to obtain the correct solution in the opposite quadrant that also
satisfy Eqs. (49).
frequencies within [x1,xN/2] if we are looking for solutions
that satisfy (48). Even if we consider a case with complete
broken symmetry, Eq. (50) will still be valid as long as the
sum in the right hand side continues to be larger than all
other sums in Eqs. (49).

Since small perturbations in the natural frequencies
have little effect in the synchronized region, it is possible
to start from the configuration that produces Eq. (54) and
continuously vary the frequencies while following the
solutions in the /N/2 � K space. If we do this while preserv-
ing the specular symmetry (48), we observe that all solu-
tions born after Ks are separated (as can be seen in
Fig. 11(b) for x1 = 1, x2 = 0.7 and x3 = 1.1). If we continue
this process until the configurations satisfy only Eq. (50)
(without symmetries), the degeneracy of the solutions is
destroyed (the Fig. 11c shows a case with x1 = 1.0,
x2 = 0.7, x3 = 1.1, x4 = �0.8, x5 = �0.75 and x6 = �1.25,
where several solutions exist above Ks but without any
overlaps).

The continuous symmetry breaking of Eq. (48) illus-
trates a property present in any configuration of natural
frequencies: the presence of degeneracies in the space
/n� � K is a consequence of the symmetries in the set
{x}N. The importance of this property becomes evident
when one consider a system with asymmetric frequency
configuration: in general the main interest does not lie
on the description of the full set of solutions above Ks,
but on the determination of the stable fixed points. While
for a chain of oscillators the stable fixed point is character-
ized by cos/n > 0 (for all n), the loop structure of the ring
allows the existence of stable fixed points with cos/n < 0
for some n (see Lee et al. [26]), and our recent work [11]
showed that these phase differences may either be /n� or
/N. Hence it is only necessary to analyze the solutions of
(50) with relations /n(/N/2) defined by (53a) and (53c),
i.e., /n 2 [�p,p] for n – n⁄, while all other combinations
of Eqs. (53) always lead to unstable solutions. Now it be-
comes clear the choice for the U++. . . in the previous chap-
ter: all stable fixed points for the dynamics on the whole
phase space come from the solutions of this specific
subspace.

A general characterization of the synchronized region in
the absence of symmetries (or with a small amount) was
already done in our previous work [11], therefore it is
not necessary to do it again. Nevertheless we can use the



Fig. 11. Numerical solution of Eq. (53) in the space /N/2 � K representing the fixed points of the system with N = 6 oscillators. (a) Setting xn = x for
(x1,x2,x3) with high degeneracy and specular symmetry. (b) The presence symmetry given by (48) separates the solutions such that only the bifurcations
located in Ks are degenerated. The natural frequencies are x1 = 1, x2 = 0.7 and x3 = 1.1. (c) The continuous symmetry breaking process separates the
spectrum of solutions completely, destroying the degeneracy. The natural frequencies are x1 = 1, x2 = 0.7, x3 = 1.1, x4 = �0.8, x5 = �0.75 and x6 = �1.25.
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symmetry properties of the natural frequencies in order to
study the behavior of the critical synchronization coupling
Ks as a function of the number of oscillators, as discussed in
the next section.

6. Asymptotic behavior of the critical coupling

Possibly the simplest non-degenerate case analyzable
through the solutions of (50) consists in the configuration
where the frequencies are evenly spaced in the interval
[�c,c]:

xn ¼
c

N � 1
ð�2nþ N þ 1Þ; n ¼ 1; . . . ;N: ð55Þ

The frequencies of the oscillators are mirror images with
respect to the axis between /N and /N/2, i. e., xN+1�n = �xn

for n = 1, . . . ,N/2, which gives

sin /N=2þn ¼ sin /n; n ¼ 1; . . . ;N=2� 1: ð56Þ

Assuming /N/2+n = /n the phase differences /n in Eqs. (53)
are given by:

/nð/N=2;KÞ ¼ arcsin sin /N=2 �
cðN � 2nÞ2

4ðN � 1ÞK

" #
; ð57Þ

for n = 1, . . . ,N/2 � 1, such that the solutions in the syn-
chronized region are obtained from

sin /N=2 þ 2
XN2�1

n¼1

/n

0
@

1
Aþ sin /N=2 ¼

cN2

4ðN � 1ÞK : ð58Þ

The bifurcation responsible for the full synchronization is
always the first solution of (58) and it can appear near
any of the two boundaries of the solvability region, i.e., it
is characterized either by sin/N/2 � 1 or sin/N � �1. The
number of bifurcations giving birth to stable solutions is
proportional to the number of oscillators, and for increas-
ing N we observed that they tend to pile up near the min-
imum value of K under which Eq. (58) may present a
solution. In other words, for large N it is possible to approx-
imate sin/N/2 � sin/N � 2 to obtain an asymptotic behavior
for the critical coupling:

Kasymptotic
s ðNÞ ¼ cN2

8ðN � 1Þ ; ð59Þ
Fig. 12(a) shows the results obtained from the simulation
in contrast to the analytical expression in (59), while
Fig. 12(b) exhibits the actual value of the sum of the two
sines, thus corroborating the used approximation.

That asymptotic behavior of Ks 
 N, also observed in the
cases treated previously, is not just a consequence of the
evenly spaced frequencies but rather from the fact that
the interval is finite, thus the differences xn �xn+1 are
proportional to 1/N. If we consider the configuration

xn ¼
�
2
ð�2nþ N þ 1Þ; n ¼ 1; . . . ;N; ð60Þ

where xn �xn+1 = �, independent of N, the Eqs. (57) and
(58) are written as

/nð/N=2;KÞ ¼ arcsin sin /N=2 �
�ðN � 2nÞ2

8K

" #
; ð61Þ

for n = 1, . . . ,N/2 � 1, and

sin /N=2 þ 2
XN2�1

n¼1

/n

0
@

1
Aþ sin /N=2 ¼

�N2

8K
: ð62Þ

Since this system presents the same characteristics as the
latter, the asymptotic limit of Ks(N) can also be obtained
with sin/N/2 � sin/N � 2, so

Kasymptotic
s ðNÞ ¼ �N

2

16
; ð63Þ

as shown in Fig. 12(c).
For all the analyzed cases, the critical value of the cou-

pling constant at synchronization grows with N, which is
common in systems with nearest neighbor interactions be-
tween oscillators, and this includes the chain of oscillators
[23]. In both cases given by (48) as well as the mirror sym-
metry (xN+1�n = �xn) present in the evenly spaced config-
urations of frequencies (55) and (60), any prescription for
the distribution of frequencies that has a well defined
behavior of the sum of the frequencies with N, that is,

XN=2

n¼1

xn ¼ f ðNÞ; ð64Þ

will have (in general) a behavior of the critical coupling of
the form KsðNÞ 
 1

2 f ðNÞ, being exact for (48) and



Fig. 12. Behavior of Ks(N) obtained from different configurations of natural frequencies, represented by dots, and the continuous line are the theoretical
asymptotic curves: (a) xn is defined in (55) with c = 1 (logarithmic scale) and the line is given by Eq. (59). (b) Behavior of sin/N/2 � sin/N � 2. (c) xn is
defined in (60) with � = 0.002 (logarithmic scale) and the line is given by the Eq. (63). (d) xn is defined in (65) with c = 1, and the coupling is inversely
proportional to the system size. The curve corresponds to the asymptotic fitting (68) with A = 0.485.
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asymptotic for the other cases. As in general the sum in
(64) produces a function which increases with N, these
configurations will always have Ks ?1 when N ?1.
But, there exists at least one configuration for which this
property is not valid: a system with mirror symmetry
xN+1�n = �xn and natural frequencies given by

xn ¼
cð�1Þnþ1

N � 1
ð�2nþ N þ 1Þ; n ¼ 1; . . . ;N=2: ð65Þ

Due to the term (�1)n+1 the largest sequential sumP
nxn that can be obtained corresponds to the largest

element of the set {x}N (x1 = c), such that the equations
that describe this system in the synchronized region
are:

/nð/1Þ ¼ arcsin sin /1 �
c N � 2þ ð�1ÞnðN � 2nÞ
� �

2ðN � 1ÞK

� �
;

ð66Þ

for n = 2, . . . ,N/2, and

sin 2/1 þ 2
XN=2�1

n¼2

/nð/1Þ þ /N=2ð/1Þ
" #

þ sin /1 ¼
c
K
: ð67Þ

When the number of oscillators increases the effect in the
solvability region is the same as that in the cases of evenly
spaced frequencies, therefore in the limit N ?1 we must
have sin/1 � sin/N 
 2. But as the right hand side of Eq.
(67) does not depend on N, the critical coupling Ks should
decrease with N (since for small systems Ks > c/2). Then,
if we take the limit of a very large number of oscillators,
we should obtain

Kasymptotic
s ðNÞ ¼ c=2þ A

N
þ OðN�2Þ; ð68Þ
as can be seen in Fig. 12(d), where A is just a constant. The
importance to obtain a configuration of frequencies which
produces a behavior for the critical coupling Ks 
 1/N in the
LCKM resides in the comparison with systems that possess
larger network connectivity. The critical coupling in the
Kuramoto model (globally connected) decreases with N
for natural frequencies defined in a finite interval [27],
while locally connected model seems to diverge in the lim-
it N ?1. At first sight, one would expect a transition in the
asymptotic limit for some critical network connectivity,
but our result indicates that, under a proper organization
of the natural frequencies in the LCKM, the two regimes
may be connected in a continuous way, just as the type
of interaction considered in [28]. We believe that this sub-
ject deserves further investigation.
7. Conclusions

In the present work we gave a comprehensive descrip-
tion of the locally coupled Kuramoto model under the
presence of symmetries and explored to a large extent
the analyticity limits of the system. In the following we
summarize the salient features.

Starting with the analysis of small systems, we gave a
full description of the synchronized region, along with
the determination of the critical synchronization coupling
for some cases, and we showed how the fixed points may
be obtained from a general configuration of natural fre-
quencies, independent of the system size.

To keep our attention on the analytical regime of the
model, we considered a highly symmetric configuration,
consisting of two natural frequencies: x for odd numbered
oscillators and �x for even numbered ones. Despite of its
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apparent simplicity, many unusual and (or) unexpected re-
sults were observed.

We found that the stability of the fixed points depend
on the number of dimensions of the manifold where the
dynamics is set to happen: while for 2-dimensional sys-
tems (obtained from symmetric initial conditions) a large
number of stable fixed points populate the phase space,
the complete system is characterized by just a small
amount of stable fixed points.

Several times we chose initial condition with a given
symmetry. This was done to control the final state. As an
example, consider the case of a system with two natural
frequencies. The conditions given by Eq. (32) lead to Eq.
(33). We note that the phase differences depend on two
independent phases /1 and /2. All the solutions are con-
structed from all possible combinations of /þn and /þn in
Eq. (37). So given some specific initial condition prescribed
by Eq. (37), the solutions is already determined by Eq. (39).
If we start with a set of initial conditions without the sym-
metry of the system, we cannot anticipate into which solu-
tion of Eq. (39) the dynamics will evolve. Imposing the
symmetry on the phases from the beginning, we select
the attractor in the corresponding subspace.

At the onset of synchronization it is well known that
one should expect periodic phase slips, however in the
two frequencies domain the system exhibits a strong
dependence on the initial conditions: a regime of phase
slips with irregular period (apparently chaotic) coexists
with complete erratic bursting behavior characterized by
a long time absence of phase slips as well as intermittent
appearances. This local character of the system also ex-
tends to the synchronized region, where we could observe
that the stable fixed points created slightly above Ks be-
have only as local attractors in the phase space. The coex-
istence of stable fixed points may lead to the appearances
of attractor crowding, as described by Wiesenfeld and Had-
ley [29], and we hope further investigation will clarify the
issue.

We also observed stability exchange between synchro-
nized solutions. This feature happens when two fixed point
collide in the phase space. The values of / for these ex-
changes to occur and the nature of each fixed point were
determined through the analysis of the Jacobian’s eigen-
values in the reduced system, and the same feature is ex-
pected to happen in the complete phase space.

The presence of a type of specular symmetry enabled us
to obtain some analytical expressions for the critical syn-
chronization coupling, but one important result came from
the analysis of a continuous symmetry breaking of the sys-
tem: the degeneracies in the /n� � K space are lifted in the
absence of symmetries on the natural frequencies. As a
consequence we could show how just a small amount of
the solutions will be stable, and the search for stable fixed
points may be reduced to the analysis of just the solutions
composed by phase differences belonging to the interval
[�p,p].

By further exploring the symmetry properties we could
manage to obtain some asymptotic results concerning the
behavior of the critical synchronization coupling as a func-
tion of the system size N. While for general configuration
the LCKM tends to be proportional to the number of oscil-
lators, we found a counterexample where Ks actually de-
creases with N.

Many of the phenomena and results discussed here
were not observed in a completely random natural fre-
quencies distribution. The study of all theses symmetric
cases have brought insights about the complexity of the
LCKM and helped us advance in the understanding and
the development of analytical methods to analyze this kind
of system.
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