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A system of nearest neighbors Kuramoto-like coupled oscillators placed in a ring is studied above the critical
synchronization transition. We find a richness of solutions when the coupling increases, which exists only within
a solvability region (SR). We also find that the solutions possess different characteristics, depending on the
section of the boundary of the SR where they appear. We study the birth of these solutions and how they evolve
when the coupling strength increases, and determine the diagram of solutions in phase space.
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I. INTRODUCTION

The ubiquity of phenomena linked to coupled systems
which can behave chaotically has made them the focus of
interest for the last 20 years. The study of these systems has
raised interest with the intent of realistically modeling spatially
extended systems, as diverse as Josephson junction arrays,
multimode lasers, vortex dynamics, biological information
processing, and neurodynamics as well as applications in
communications [1–8], with the belief that dominant features
will be retained in such simple models. Coupled systems
with local interactions are of special importance. In particular
the Kuramoto model [9] in its local version, i.e., the locally
coupled Kuramoto model (LCKM), where individually linear
oscillators behave chaotically under the effect of nonlinear
local interactions, has raised attention since most features of
systems with phase coupling appear in this particularly simple
model [10–14].

This system which shows synchronization in the mean
frequency has been thoroughly studied at and before full
synchronization. The oscillators cluster in average frequency,
decreasing the number of clusters until they fuse into a single
one at full synchronization. At this moment the frequency
becomes constant and the phases lock, such that all phase
differences are constant. The solution for full synchronization
and its stability has been studied by many authors [15–19].
Zheng et al. [12] already in 1998 pointed out that the behavior
of the order parameter “indicates the coexistence of multiple
attractors of phase locking states” above the synchronization
critical coupling, Ks . Even when synchronization with coex-
istence of attractors has been reported by different authors
and in different fields below Ks [12–14,20–25], nobody, to
the best of our knowledge, has pursued the matter above
full synchronization. If we have the intention to simulate real
systems, mostly in technological applications, it is important
to know whether we can move freely below and also above
synchronization within stable solutions and to know whether
they are unique. In this work we shall study a LCKM above
complete synchronization and show that there is an unexpected
richness of behavior: multistable solutions appear and we
cannot change the strength of the coupling without danger
of falling into different attractors.

In Sec. II we present the model and discuss the conditions
for the existence of multistable solutions; in Sec. III we address

their stability and estimate their basins of attraction; in Sec. IV
we show how they appear, starting from a chain of oscillators;
finally in Sec. V we summarize the work.

II. LOCALLY COUPLED KURAMOTO MODEL IN THE
SYNCHRONIZED REGION

The model consists of a set of linear oscillators placed in a
ring, with a nonlinear nearest-neighbor interaction described
by the following equations:

θ̇n = ωn + K[sin(θn−1 − θn) + sin(θn+1 − θn)], (1)

where n = 1, . . . ,N , and ωn ∈ {ω} is the set of natural
frequencies of the oscillators. The ring topology is defined
by the periodic conditions θN+1 = θ1 and θ0 = θN . There is a
minimum value for the coupling constant K , denoted as critical
synchronization coupling Ks , that drives the system into a fully
synchronized state [16–18]. In this state the oscillators’ instan-
taneous frequencies assume a constant value � = 1

N

∑N
j=1 ωj

that remains unchanged for any K ∈ [Ks,∞).
The set of equations (1) in a synchronized state may be

written as

� − ωn

K
= sin φn−1 − sin φn, n = 1, . . . ,N, (2)

where φn = θn − θn+1. The solutions depend on the number
of oscillators N and the coupling constant K � Ks . We shall
see that Ks will depend on a particular variable φn∗ , where
n∗ plays a very important role which will be apparent later.
For a given distribution of frequencies {ω}, any φn may be
written as a function of an arbitrarily chosen variable φn∗ on
the synchronization region:

φn(φn∗ ,K) = arcsin

⎡
⎣sin φn∗ + 1

K

n∗∑
j=n+1

(� − ωj )

⎤
⎦ , (3a)

for n = 1, . . . ,n∗ − 1 and

φn(φn∗,K) = arcsin

⎡
⎣sin φn∗ − 1

K

n∑
j=n∗+1

(� − ωj )

⎤
⎦ , (3b)

for n = n∗ + 1, . . . ,N − 1. Since the sum of all phase differ-
ences is equal to zero, it is possible to write φN = −∑N−1

j=1 φj ,
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in order to reduce the set of N equations (2) to a single one
depending on two variables (φn∗ ,K):

sin

⎛
⎝φn∗ +

N−1∑
n�=n∗

φn

⎞
⎠ + sin φn∗ =

∑n∗
j=1(ωj − �)

K
. (4)

The choice of φn∗ will become clear in the next paragraph.
If one removes a single link (interaction) between any pair

of oscillators the result is a chain with free ends. After repeating
the procedure for each possible link we obtain N distinct
chains. If we can find the chain encapsulated inside the ring
with the highest critical synchronization coupling we may be
able to find the solutions above Ks . We approach this task by
applying Strogatz and Mirollo’s calculation [15] successively,
so that at the synchronization threshold the coupling strength
for each chain is given by

Kr = max
r�l<r+N

∣∣∣∣∣∣
l∑

j=r

(� − ωj )

∣∣∣∣∣∣ , r = 1, . . . ,N. (5)

Here r denotes the shift on the indices of the oscillators from
where the chain starts, and ωj , for j > N , is defined by
the periodic boundary conditions on the natural frequencies,
ωr+N = ωr for r = 1, . . . ,N . For every value of r we have
to determine the maximum Kr , which defines lr . From Kr

we obtain a sequence {K1, . . . ,KN }. The maximum value
in this sequence defines Kchain

s = Krmax with index lrmax . As
it is always possible to relabel the oscillators in the ring
while keeping their specific ordering, we shall consider the
label obtained from the translation n → n + 1 − rmax. On this
labeling the synchronization coupling is written as Kchain

s =
| ∑n∗

j=1(� − ωj )|, identifying n∗ = lrmax + 1 − rmax.
Once we established our basic assumptions, we write

Eq. (4) as

sin φn∗ − sin[φN (n∗,K)] = s
Kchain

s

K
, (6)

with s = sgn[
∑n∗

j=1(� − ωj )], and solve it numerically using
Mathematica. The general form of the solution is presented
in Fig. 1 for N = 10, 20, and 50, where the frequencies {ω}N
were generated from a uniform distribution function defined
in the interval [−10,10]. We have performed calculations for
different natural frequency realizations, all the results present
the same features as will be described, therefore we keep here
to a single realization for a given N to avoid confusion.

We see that there are multiple phase locking solutions
for the system above Ks , spontaneously generated within a
confined region on the bifurcation diagram (BD), as indicated
by the dotted lines. These solutions are of two kinds:
(a) type I solutions generated on the bottom boundary of
BD with sin φn∗ �= s and bifurcate into branches keeping
sgn(cos φn∗ ) invariant; (b) type II solutions born near the top
boundary of BD (close to sin φn∗ = s) and the branches have
opposite signs of cos φn∗ .
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FIG. 1. (Color online) Numerical solutions of Eq. (4) representing
the bifurcation diagram for a ring of oscillators (stability not explicit):
Top: N = 10 with natural frequencies ω1 = 6.9, ω2 = 2.8, ω3 =
−0.4, ω4 = −2.6, ω5 = 1.3, ω6 = −6.8, ω7 = 0.8, ω8 = −1.6, ω9 =
−9.5, and ω10 = −6.7. Middle: realization with N = 20. Bottom:
realization with N = 50. The sets of natural frequencies {ω}N are
generated from a uniform distribution function defined in the interval
[−10,10]. Thick (black) lines represent solutions with cos φn∗ > 0,
thin (blue) lines have cos φn∗ < 0, and the dotted lines are the limiting
boundaries sin φN = −s and sin φn∗ = s.

The confinement region may be obtained, since for each
value of sin φn∗ there is a maximum value of K below which
Eq, (6) is never satisfied. We assume that sin φN = −s and
find that all solutions appear at

| sin φn∗ | �
∣∣∣∣s

(
Kchain

s

K
− 1

)∣∣∣∣ . (7)

The equal sign describes the points where type I solutions
touch this bordering line and is represented by the inferior
dotted line in the BD. The solvability region (SR) contains all
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the synchronized solutions and it can be defined by Eq. (7).
It is worth mentioning that Eq. (7) shows that the critical
synchronization coupling for the ring satisfies the condition

Ks � Kchain
s

2 .
A closer look at the BD shows that there is always one

solution from each bifurcation that is tangent to the boundary
of the SR at only one point (this will appear clearly when
we discuss Fig. 5): it corresponds to sin φN = −s for type I
and sin φn∗ = s for type II solutions. On all of these tangent
points, independent of the type of boundary, a straightforward
calculation shows that they satisfy the condition

cos

⎛
⎝N−1∑

n�=n∗
φn

⎞
⎠ = Kchain

s

K
− 1. (8)

The number of bifurcations depends on the number of solutions
of Eq. (8) over each boundary of the SR. Since the cosine
argument may be expanded as a Laurent series defined by

φn = A0 + ∑∞
m=1

A
(n)
m

Km , the decaying behavior as a function of
K guarantees a finite number of solutions. From the definition
of the phase differences (3), it is possible to see that the A0 term
depends on the size of the system so that the effect of increasing
the number of oscillators also increases the number of phase
locking solutions above Ks , as may be observed in Fig. 1.

One way of addressing the question of how the multiple
solutions are generated is to look at the solutions of φn∗ and
φN on the tangent points. By starting with type I solutions
the condition sin φN = −s imposes that φN should satisfy the
equation

φ
(I)
N (m1) = −s

(4m1 + 1)π

2
, m1 = 0,1,2, . . . (9)

For each possible value of m1 Eq. (6) admits two solutions:

φ
(I,1)
n∗ = arcsin

[
s

(
Kchain

s

K
− 1

)]
, (10a)

φ
(I,2)
n∗ = − arcsin

[
s

(
Kchain

s

K
− 1

)]
+ π. (10b)

If we fix φn∗ = φ
(I,1)
n∗ then the values assumed by m1 provide

all the values of K where the solutions with cos φn∗ > 0 are
tangent to the limiting boundary. Similarly when φn∗ = φ

(I,2)
n∗

the values of m1 give the tangent points for the solutions with
cos φn∗ < 0. Figure 2 (top) shows these solutions for the N =
10 configuration used previously.

The same procedure may be performed for the type II
solutions, where the condition sin φn∗ = s imposes

φ
(II)
n∗ (m2) = −s

(4m2 − 1)π

2
, m2 = 0,1,2, . . . (11)

Now for each value of m2 we also have two types of solutions
for φN :

φ
(II,1)
N = − arcsin

[
s

(
Kchain

s

K
− 1

)]
, (12a)

φ
(II,2)
N = arcsin

[
s

(
Kchain

s

K
− 1

)]
− π. (12b)
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FIG. 2. (Color online) Graphical representation of the numerical

solutions of Eq. (8) for the N = 10 realization, with y = s( Kchain
s

K
− 1)

(thin blue curve) and fI,II = cos(
∑N−1

n �=n∗ φn) (thick black curve)
calculated on the tangent points from type I and II solutions,
respectively. Top: φ

(I,1)
n∗ solutions (black dots) at K(m1=0) = 9.9905,

K(m1=1) = 23.0467, K(m1=2) = 190.016, and φ
(I,2)
n∗ solutions (blue

squares) at K(m1=0) = 13.443 and K(m1=1) = 104.7171. Bottom: φ(II,1)
N

solutions (black dots) at K(m2=0) = 10.75473, K(m2=1) = 84.3981,
and φ

(II,2)
N solutions (blue squares) at K(m2=2) = 31.1029.

The values of K for the tangent points on this boundary are
also shown in Fig. 2 (bottom), for the same realization with
N = 10.

With the description of all multiple phase locking solutions
above Ks (at least on the tangent points) it is possible to have
some insight of their origin. We notice that the sum of the phase
differences in Eq. (4) goes beyond 2π but not as a multiple of
2π . In this way it is the presence of this term—connecting
the first to the last oscillators of the chain—that gener-
ates the multiple solutions. The notable symmetry between
the type I and type II tangent point solutions comes from the
fact that if we remove the interaction term between oscillators
θ1 and θN the critical synchronization coupling of the resulting
chain is the same as the one obtained from extracting the
interaction term connecting oscillators θn∗ and θn∗+1, even
when the phase locked solutions may be different (this feature
may be observed by reproducing the calculation described
to obtain Kchain

s starting with the label n∗). In spite of this
symmetry the number of type I and type II solutions are in
general not the same.

III. STABILITY OF SOLUTIONS AND BASINS OF
ATTRACTION

To perform a linear stability analysis of the solutions it is
necessary to obtain the Jacobian matrix, but as the equations of
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motion are invariant by global phase translations θn → θn + �

(for every n) the analysis is a little more complicated.
It is necessary to realize that the freedom of gauge reduces

the N equations of motion (1) to an (N − 1)-dimensional
system (this is an effect of the constraint

∑N
n=1 φn = 0).

Although a gauge fixing condition would enable us to eliminate
the extra degree of freedom and perform the stability analysis
on the θn variables we believe there is a more tractable way
to do this. Instead of considering the equations of motion
as presented in Eq. (1) we write the equations on the φn

variables and eliminate one degree of freedom, replacing φN

by −∑N−1
n=1 φn. Because only the equations for φ̇1 and φ̇N−1

are dependent on φN , we have

φ̇1 = ω1 − ω2 − K

[
sin

(
N−1∑
n=1

φn

)
+ 2 sin φ1 − sin φ2

]
,

(13a)

φ̇N−1 = ωN−1 − ωN + K

[
sin

(
N−1∑
n=1

φn

)
+ sin φN−2

− 2 sin φN−1

]
. (13b)

The rest of the equations for n = 2, . . . ,N − 2 do not depend
on φN and are expressed in the usual form

φ̇n = ωn − ωn+1

+K (sin φn−1 − 2 sin φn + sin φn+1) . (13c)

Due to the structure of the equations, the elements of the
Jacobian matrix may be written as Jn,m = ∂φm

φ̇n. Since most
of the elements are null, let us focus on the nonzero ones: the
first and last lines are complete with the elements given by

J1,1 = −K

⎡
⎣2 cos φ1 + cos

⎛
⎝N−1∑

j=1

φj

⎞
⎠

⎤
⎦ , (14a)

J1,2 = K

⎡
⎣cos φ1 − cos

⎛
⎝N−1∑

j=1

φj

⎞
⎠

⎤
⎦ , (14b)

JN−1,N−2 = K

⎡
⎣cos φN−2 − cos

⎛
⎝N−1∑

j=1

φj

⎞
⎠

⎤
⎦ , (14c)

JN−1,N−1 = −K

⎡
⎣2 cos φN−1 + cos

⎛
⎝N−1∑

j=1

φj

⎞
⎠

⎤
⎦ , (14d)

and for n = 1, . . . ,N − 3

JN−1,n = J1,n+2 = −k cos

⎛
⎝N−1∑

j=1

φj

⎞
⎠; (14e)

all other lines from n = 2, . . . ,N − 2 have nonzero elements
only on the diagonal and first neighbors, namely,

Jn,m = K cos φm(δm,n−1 − 2δm,n + δm,n+1). (14f)

The linear stability of the fixed points is determined by the
structure of the Jacobian eigenvalues: a solution will be stable
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Max Re λ

FIG. 3. (Color online) Largest Jacobian eigenvalue for the N =
10 case with K = 120. Black dots represent phase locking solutions
with cos φn∗ > 0 while blue squares represent phase locking solutions
with cos φn∗ < 0.

only if the real part of all eigenvalues are negative. Since a
general system with N oscillators has an (N − 1) × (N − 1)
Jacobian matrix, the eigenvalue equation is too complicated
to be treated analytically. In this way we perform a numerical
approach that consists on fixing a value for the coupling K and
replacing the phase locked solutions φn on the Jacobian matrix
elements by the numerical calculation of the eigenvalues λn,
for n = 1, . . . ,N − 1. Figure 3 shows the real part of the largest
eigenvalue for all fixed points for the case N = 10 with K =
120 (the fixed points may be inferred from either Fig. 1 or
Fig. 4). By repeating the procedure for other values of K on

20 40 60 80 100 120

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

K

si
n

φ n

20 40 60 80 100 120

0.5

0.6

0.7

0.8

0.9

1.0

K

si
n

φ n

FIG. 4. (Color online) Bifurcation diagram for N = 10 with ex-
plicit stability. Continuous (dashed) curves represent stable (unstable)
solutions. Top: type I solutions. Bottom: type II solutions.
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FIG. 5. (Color online) Zoom of the first two bifurcations present
on the BD of the N = 10 case. Left: Zoom of the Ks bifurcation from
Fig. 4 (top) with a tangent point from the stable solution touching
the SR boundary at sin φN = −s. Right: first bifurcation from type II
solutions from Fig. 4 (bottom) showing that the stable solution is
actually born with cos φn∗ < 0 and changes sign when it touches the
SR curve sin φn∗ = s.

the range [Ks,120] we were able to determine the stability of all
solutions, as shown on the BD from Fig. 4. Our results confirm
that the stability of a branch is not altered by variations of K ,
therefore the results obtained from Fig. 3 may be extrapolated
to the whole BD.

Let us focus on the N = 10 case. If we look at the type I
solutions (boundary of the SR with sin φn∗ �= s), as shown at
the top of Fig. 4, we observe that if cos φn∗ > 0, two branches
are born on a saddle node bifurcation and the stable branch is
tangent to the boundary curve, sin φN = −s (details are shown
in Fig. 5 left). On the other hand both branches with cos φn∗ <

0 born at the same point, are unstable with at least one positive
eigenvalue. If we take a look at the bottom of Fig. 4 it is
possible to see that the type II solutions (close to sin φn∗ = s)
also present bifurcations that generate two unstable solutions.
The stable solutions also have a point tangent to a SR curve
(sin φn∗ = s), but since sin φn∗ = s, cos φn∗ changes sign at the
tangent point, which is different from the type I case, and the
stable solution starts at the bifurcation with cos φn∗ < 0 and
changes sign at the sin φn∗ = s line.

Now let us analyze the solutions near the bifurcations. All
branches are born at local minima of the function K(φn∗)
defined in the synchronized region (θ̇n = �), where the
critical synchronization coupling Ks is the absolute minimum.
Bearing this in mind, when we take a closer look at bifurcations
from each type of solution, an interesting feature is observed
(Fig. 5): sin φn is not equal to ±1 at Ks or at any other local
minima for any n. The explanation for this behavior lies in
Eq. (6): in order to have a bifurcation with a sine equal to ±1
it is necessary that either φn∗ or φN present this property, but
since φN is a nonlinear function of φn∗ there are accessible
synchronized solutions prior to the appearance of the sine
equal to ±1. This result is in agreement with the condition

N∑
n=1

1

cos φn

= 0, (15)

found to be satisfied at the critical coupling Ks by any random
distributed natural frequency on a ring (as shown in [17]),
which makes it impossible to have a bifurcation with a sine
equal to ±1 [27]. Nevertheless there is a sine equal to ±1

near the bifurcation, with the difference becoming smaller
as N → ∞ in agreement with previous literature where this
fact has played a crucial role [15,16]. In the next section we
will show how these deviations and the multiple solutions are
generated from a chain of oscillators.

The general picture we obtained for the BD with random
distributed frequencies, from both simulation and numerical
calculation, may be summarized as follows: for a given N,
a configuration {ω}N determines a SR for the system in
which all solutions come from bifurcations near the solvability
boundaries; all stable solutions correspond to branches that
touch the solvability boundary; it is possible to extrapolate
the definition of the two types of solutions to the bifurca-
tions themselves and label them as Kl

j , where l = I or II,
for the type I or type II bifurcations and j = 1,2, . . ., gives
the order of the minima; all bifurcations are saddle-node
type, but odd values of j lead to branches with stable nodes
while even numbered ones generate only unstable solutions
[26]; none of the bifurcations may appear with a sine equal
to 1 because condition (15) must always be satisfied; in
addition to the stability analysis our numerical simulations
showed that every stable tangent point satisfies the condition
∂K cos(

∑N−1
n�=n∗ φn) > 0, although we are not able to explain

why it happens at this moment.
With the stability of the solutions fully described we

turn our attention to the basin of attraction of the stable
solutions. Since a general LCKM is a high dimensional system
a graphical analysis becomes extremely difficult. To outline
these difficulties we consider a statistical approach: given that
the fixed points are represented by values of sin φn∗ we generate
a large sample of random initial conditions for the phases on
the interval [−π,π ], for fixed values of K , and estimate the
size of the basin of attraction by the probability of the system
to reach each of the stable solutions.

If we start with the case N = 10 we could observe that as
long as the values assumed by K lie in a region where the
number of stable solutions is kept constant, the size of the
basins of attraction presents only small statistical fluctuations,
which leads us to believe that these variations of K have little
effect on the size of a basin. When we vary the coupling
constant across regions with increasing number of solutions
we observe that when a stable fixed point is created its basin of
attraction steals the majority of its size from the closest fixed
point (in the sin φn∗ space), as is illustrated in Fig. 6 for some
values of K .

We found numerically that for a given system the size of the
basins of attraction is not evenly distributed among all fixed
points: the stable solutions with phase locking sin φn∗ going to
zero as K → ∞ attract the majority of the initial conditions.
Fortunately the behavior of the system for large values of K

is easier to analyze: in the limit K → ∞ we have φn = φ, for
n = 1, . . . ,N − 1, with φ given by the solutions of

sin [(N − 1)φ] = − sin φ, (16)

i.e.,

φI = 2πn1

N
, n1 = 0, ± 1, ± 2, . . . , (17a)

φII = (2n2 + 1) π

N − 2
, n2 = 0, ± 1, ± 2, . . . . (17b)
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FIG. 6. (Color online) Estimation of the basin size for each of the
stable fixed points within the N = 10 case. Blue dots represent K =
20, lilac squares represent K = 50, and beige diamonds represent
K = 120.

In this regime the solutions depend only on the system
size N and the values assumed by the discrete probability of
reaching each of the stable fixed points (Fig. 7) are over the
envelope function defined by f (sin φn∗ ) ∼ exp (−a sin2 φn∗ ).

IV. CONNECTION TO THE CHAIN

In the previous sections we described the synchronized
region of a ring of oscillators and showed how some of the
properties of the chain are still present in this topology. Now
we focus our attention to understand the appearance of multiple
solutions. To do that we start from the solutions of a chain.

To construct the chain we remove the link between
oscillators 1 and N in the ring to end up with a chain of
oscillators where the critical synchronization is defined by

sin φn∗ = s
Kchain

s

K
(note that the sin φN term does not enter in the

dynamics). A saddle node bifurcation appears at K = Kchain
s

and naturally we have sin φn∗ = s. The effect of closing the
chain into a ring by connecting these two oscillators inserts
the extra term present on the left-hand side of Eq. (6), which
is a nonlinear function of φn∗ . Instead of a single solution for
the fully synchronized state that extends for all K � Ks , this
new configuration generates multiple stable solutions born at
the local minima of the implicit multivalued function K(φn∗ )
that bifurcate into pairs of solutions as K increases.

Now we build the ring from the open chain in a controlled
way by coupling a continuous parameter α ∈ [0,1] to the
interaction term sin φN in Eq. (2). It is easy to see that in

0.4 0.2 0.0 0.2 0.4 0.6
sin φn

0.05

0.10

0.15

0.20

0.25

0.30

Pr sin φn

FIG. 7. (Color online) Discrete probability for the system to reach
each of the stable fixed points (for large values of K) representing the
estimation of the relative basin sizes. Black dots represent a system
with N = 50, blue squares represent N = 100, and red diamonds
represent N = 200.
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(a)
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FIG. 8. (Color online) Bifurcation diagrams φn∗ vs K for N = 10
as a function of the enclosing parameter α. (a) Hysteresis formed after
the stable solution loses stability as a function of α; K I

2 coming from
infinity (α = 0.3). (b) Turning point goes to infinity (bottom) creating
two distinct solutions and K I

3 comes from infinity (α = 0.5). (c) Birth
of K II

2 and K II
3 from the closed circuit (α = 0.7). (d) Bifurcation

diagram of the ring topology showing all solutions on the region
(α = 1.0). The dotted lines correspond to φn∗ = π/2.
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φ n

FIG. 9. (Color online) Closer look at the region of the birth of K II
2

and K II
3 showing solutions for four different values of α: α1 = 0.683,

α2 = 0.7, α3 = 0.75, and α4 = 0.8. The dotted lines correspond to
φn∗ = π/2.

the case of a chain (α = 0) sin φn∗ = s
Kchain

s

K
for all K � Kchain

s

[15]. The effect of increasing α deforms the original solution
(as shown in Fig. 8) which in turn will generate the others
observed for the ring. For small values of α a hysteresis appears
at a fold bifurcation [Fig. 8(a)], creating the K

(I)
1 bifurcation

from the stable branch born at K
(II)
1 . As α increases the turning

point goes to infinity [Fig. 8(b)], completely separating the
original into two stable solutions. Bifurcations K

(I)
2 and K

(I)
3

do not present such turning points, as they seem to come from
K infinity [Figs. 8(a) and 8(b)].

Higher values of α give birth to a small closed circuit near
φn∗ = π/2 [Figs. 8(c) and 9], which via a deformation process

4 fixed points

6 fixed points

10 fixed points 12 fixed points

8 fixed points

no

fixed

point

solution
2 fixed points

A

B1

B2C

20 40 60 80 100 120
K

0.2

0.4

0.6

0.8

1.0

α

FIG. 10. (Color online) Stability diagram for the system. The
birth of a pair of solutions is represented by a continuous line as one
goes from lower to higher values of K , while the destruction of a
pair of solutions is represented by dashed lines (the definitions are
inverted if one goes from right to left). Thick (black) lines denote the
creation of one stable solution and the thin (blue) ones account for the
bifurcations with no stable equilibria. A: birth of the hysteresis. B1
and B2: bifurcations that come from infinity. C: Birth of the closed
circuit that generates K

(II)
2 and K

(II)
3 .

increases the circuit until the turning points go to K → ∞,
creating K

(II)
2 and K

(II)
3 , each one presenting two solutions.

Figure 9 shows how the closed circuit of unstable solutions
is born (α = α1) and as the parameter increases, the solution
crosses the φn∗ = π/2 line, giving rise to one stable solution.
At this point the bubble starts to deform, creating the turning
points on both sides of π/2 and generating four solutions.
When α = 1 the turning points go to infinity and the system
presents all the properties of the ring previously described.

The complete structure of the synchronized state as the
system is driven from a chain into a ring may be visualized
on the stability diagram shown in Fig. 10: small values of α

change the phase locking solutions φn but do not alter the main
structure of the chain; for α � 0.1 and K � 35 (region A) the
properties of the ring start to become apparent as the hysteresis
appears and the system presents bistability on a closed interval
of values of K; regions B1 and B2 show the bifurcations K

(I)
2

and K
(I)
3 coming from infinity and the disappearance of the

hysteresis; region C shows the birth of the closed circuit that
creates K

(II)
2 and K

(II)
3 .

V. CONCLUSIONS

In conclusion we studied a locally coupled Kuramoto
model above the full synchronization transition for a ring
of oscillators. We found a very rich panorama of solutions,
although there is only one at the critical value for full
synchronization. We were able to determine (analytically)
the solvability region (SR) where the solutions exist and to
show (numerically) that they all come from minima of the
function K(φn∗ ), with φn∗ being a specific chosen phase
difference. From the observation that every bifurcation has
a solution branch with a point tangent to the SR curves we
were able to show that the multiplicity of solutions comes as
distinct discrete values assumed by φn∗ and φN . The stability
analysis of the solutions showed the existence of saddle node
bifurcations responsible for the creation of both stable and
unstable solutions. A statistical approach to estimating the size
of the basin of attraction of the stable solutions was performed
and we were able to observe that phase locking values of
sin φn∗ closer to 0 (for large values of K) present the largest
basins. Finally we studied a system with the coupling strength
of a given link α varies from zero (free chain) to one (ring) to
investigate the birth of these solutions. We observed two basic
processes responsible for the generation of ring solutions from
the open chain: deformations that creates hysteresis for a finite
range of α; spontaneous creation that either creates solutions
coming from infinity or generates closed circuits with four
solutions (only one being stable).
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