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Determination of the critical coupling for oscillators in a ring
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We study a model of coupled oscillators with bidirectional first nearest neighbors coupling with
periodic boundary conditions. We show that a stable phase-locked solution is decided by the
oscillators at the borders between the major clusters, which merge to form a larger one of all
oscillators at the stage of complete synchronization. We are able to locate these four oscillators
depending only on the set of the initial frequencies. Using these results plus an educated guess
(supported by numerical findings) of the functional dependence of the corrections due to periodic
boundary conditions, we are able to obtain a formula for the critical coupling, at which the complete
synchronization state occurs. Such formula fits well in very good accuracy with the results that
come from numerical simulations. This also helps to determine the sizes of the major clusters in the
vicinity of the stage of full synchronization. © 2009 American Institute of Physics.
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Weakly coupled oscillators in the chaotic state have been
known to represent many physical systems as well as
chemical, biological, neurological, and so on. These sys-
tems synchronize in frequency under the influence of cou-
pling. Knowing beforehand the value of the coupling con-
stant and the dynamical behavior of the individual
oscillators for complete synchronization to occur is an
important source of information for real applications.
This paper is a continuation of previous theoretical re-
sults for these systems. Here, we derive relationships that
allow us to determine the oscillators which first lock in
phase and drag the whole system into the synchronized
state as well as the size of the two existing clusters before
the transition.

I. INTRODUCTION

In recent years we have seen oscillators coupled through
nearest neighbor interactions to be used to understand the
behavior of systems in physics, chemistry, biology, neurol-
ogy, as well as other disciplines, and to model several phe-
nomena such as Josephson junction arrays, multimode lasers,
vortex dynamics in fluids, biological information processes,
and neurodynamics.l_4 These systems have been observed to
synchronize themselves to a common frequency when the
coupling strength between these oscillators is increased.*™®
In spite of the diversity of the dynamics, the synchronization
features of many of the above mentioned systems might be
described using a simple model of weakly coupled phase
oscillators such as the Kuramoto model,4’7 as well as its
variations to adapt it for finite range interactions which are
more realistic to mimic many physical systems. Difficulties
arise since finite range coupled systems are difficult to ana-
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lyze and to solve analytically. In spite of that, in order to
figure out the collective phenomena when finite range inter-
actions are considered, it is of fundamental importance to
study and to understand the nearest neighbor interactions,
which is the simplest form of the local interactions. In this
context, a simplified version of the Kuramoto model with
nearest neighbor coupling in a ring topology, which we shall
refer to as locally coupled Kuramoto model (LCKM), is a
good candidate to describe the dynamics of coupled systems
with local interactions. Several reports exist where the
LCKM has been used to represent the dynamics of a variety
of systems such as Josephson junctions, coupled lasers, neu-
rons, chains with disorders, and multicellular systems in bi-
ology and in communication systems.sﬂ*9 It has also been
shown that the equations of the resistively shunted junction
which describe a ladder array of overdamped, critical-current
disordered Josephson junctions that are current biased along
the rungs of the ladder can be expressed by a LCKM." For
nearest neighbor coupled Rossler oscillators the phase syn-
chronization can be described by the LCKM,11 as well as
locally coupled lasers,'*"® where local interactions are domi-
nant. LCKM can also be used to model the occurrence of
traveling waves in neurons.”” In communication systems,
unidirectionally coupled Kuramoto model can be used to de-
scribe an antenna array.14 Such unidirectionally coupled
Kuramoto models can be considered as a special case of the
LCKM and it often mimics the same behavior. Therefore,
LCKM can provide a way to understand phase synchroniza-
tion in coupled systems in general.

While in the Kuramoto model for long range interactions
one has to rely on average quantities, in a mean field ap-
proximation or by means of an order parameter, etc., in the
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local model it is necessary to study the behavior of indi-
vidual oscillators in order to understand the collective dy-
namics. Therefore, due to the difficulty in applying standard
techniques of statistical mechanics, one should look for a
simple approach to understand the coupled system with local
interactions by means of numerical study of the temporal
behavior of the individual oscillators. Such analysis is nec-
essary in order to obtain a close picture of the effect of the
local interactions on synchronization. In this case, numerical
investigations can assist to figure out the mechanism of in-
teractions at the stage of complete synchronization which in
turn helps to get an analytic solution. Earlier studies on the
LCKM show several interesting features including tree struc-
tures with synchronized clusters, phase slips, bursting behav-
ior and saddle node bifurcation, and so on.">'% 1t has also
been shown that neighboring elements share dominating fre-
quencies in their time spectra, and that this feature plays an
important role in the dynamics of formation of clusters in the
local model:'” that the order parameter, which measures the
evolution of the phases of the nearest neighbor oscillators,
becomes maximum at the partial synchronization points in-
side the tree of synchronization18 and a scheme has been
developed based on the method of Lagrange multipliers to
estimate the critical coupling strength for complete synchro-
nization in the local Kuramoto model with different bound-
ary conditions."

Very recently, we identified two oscillators which are
responsible  for  dragging the system into full
synchronization,20 and the difference in phase for this pair is
* /2. These two oscillators are among two pairs of oscilla-
tors which are formed by the four oscillators at the borders
between major clusters in the vicinity of the critical cou-
pling. Using these results here we develop a method to ob-
tain a mathematical expression for the value of the critical
coupling at which full synchronization occurs, once a set of
initial conditions for the frequencies of the N oscillators is
assigned. In the process of finding the solution, we come
across two quantities which will permit us to identify those
oscillators at the borders between major clusters mentioned
before, and also determine the number of oscillators at the
major clusters in the vicinity of the critical coupling. Finally,
with the help of the formula for the critical coupling we can
identify the pair of oscillators which has the phase-lock con-
dition, depending only on the set of the initial frequencies.

This paper is organized as follows. In Sec. II we inves-
tigate the LCKM where periodic boundary conditions are
used. We determine the critical coupling at the stage of com-
plete synchronization as well as the number of oscillators at
each cluster in the vicinity of the critical coupling. Finally, in
Sec. III we give a conclusion, which is based on the sum-
mary of the results.

Il. OSCILLATORS IN A RING

The local model of nearest neighbor interactions or
LCKM can be considered as a diffusive version of the Kura-
moto model and it is expressed as'®0
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FIG. 1. Synchronization tree for a system of 30 oscillators with detailed
composition of each cluster before full synchronization. The oscillators at
the borders between major cluster in the vicinity of K. are shown. The inset
shows Z; vs i, where max{Z;} corresponds to Z; and min{Z;} to Z,,.

95 = w; + K[sin(¢;) - sin(¢;_y)] (1)
with periodic boundary conditions 6;,y=6;, and for
i=1,2,...,N. The set of the initial values of frequencies {w;}

is the natural frequencies taken from a Gaussian distribution
and K is the coupling strength. The phase difference is de-
fined as ¢;=6,,,—6; for i=1,2,3,...,N. These nonidentical
oscillators (1) cluster in time averaged frequency until they
completely synchronize to a common value given by the
average frequency wy=(1/ N)Eiilwi at a critical coupling K.
At K=K, the phase differences and the frequencies are time
independent and all the oscillators remain synchronized. In
Fig. 1 we show the synchronization tree for a periodic sys-
tem with N=30 oscillators, where the elements which com-
pose each one of the major clusters are indicated in each
branch. These clusters merge into one at K. where all oscil-
lators have the same frequency. The major clusters just be-
fore K, contain Ny and N, oscillators, where N=N|+N,. It is
not necessary for these clusters to have the same numbers of
oscillators. At the vicinity of K., major clusters of successive
oscillators have sets of nearest neighbors at the borders. An
interesting fact emerges: the phase-locked solution is always
valid for one and only one phase difference, and this is the
difference between the phases of the two oscillators at the
border of the clusters.”’ Thus, for these two neighboring os-
cillators, the equation for the phase difference is

b,=4, - 2K sin(¢,) + K sin(¢p,_,) + K sin(¢,, ), (2)

where A, =w,,; - o,. Equation (2) at K, has ¢, =0, and hence
9,,= 9n+1=w0. It has been found that the phase-locked solu-
tion is satisfied when ¢, =7/2 for the case of w,,; > w, and
¢,=—/2 for the reverse. In addition the phase-locked solu-
tion exists when™ X, =|A,/ K, +[sin(¢,,,)+sin(¢,_,)]|=2. It
is already well known that in the vicinity of K., Eq. (2)
shows that the quantities ¢, and ¢, present the phenomenon
of phase slip, that is, they remain constant for a given period
of time T and then they jump, followed by another period of
constant value, a jump and so on. Due to the diffusive char-
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acter of the LCKM, all other quantities ¢ and ¢ of other
oscillators relate to ¢, and ¢, (see details in Ref. 20) and in
turn will present the same phenomenon, which has also been
seen numerically.”’16 Since the phase slip is a phenomenon
that happens just below K, one has to be careful when per-
forming numerical integration of Eq. (1) to avoid being
trapped in a ghost of the steady state solution of ¢;=0 which
will produce a lower value of K, than it should be. Therefore,
we perform computations with an accuracy such that
|K~—K_| ranges from 1077 to 10~%, where K~ <K_, to make
sure that we are indeed very close to K, and that increasing K
in a very small amount AK within the mentioned accuracy,
we shall arrive at the steady state solution.”” We also check
the quantities ¢, ¢, and |X,|=2 up to a very long T to ensure
that they are time independent.

Thus, if one can develop a method to allocate the two
oscillators which will have the phase difference ¢,= =+ 7/2,
then it will be possible to determine the value X, and to
obtain the critical coupling (K,.) at which a complete syn-
chronization occurs. A difficulty arises in the determination
of the values of sin(¢,,;) and sin(¢,_,) due to the topology
of a ring which is an endless system. Therefore, there is no
direct method to specify the two oscillators n and n+1,
which have phase difference that would satisfy the phase-
lock condition. In fact one might think to solve a system of
equations similar to Eq. (2), for a varying suffix from i=1 to
N



.= @ + @ + €. (5)
2 2
In order to determine €, we use the equations for the steady
state for suffixes i=I/,m such that ¢;=A,—2K, sin(¢;)
+K, sin(¢,_;)+K, sin(¢;,;)=0. When these two equations
are used they will lead exactly to Egs. (3) and (4), since the
sum of the equations of system (1) from 1 to both / and m
will give K, sin(¢;,,)+K, sin(¢;_1)=2Z;+2K, sin(py)—A,;
for i=1I,m. Due to the cyclic character of the equations, any-
thing that we do will bring us back to the same equations (3)
and (4). At this point we make an educated guess about the
quantities that € depends on and then we see how to get its
value. In addition to both Z; and Z,,, the quantities A; and A,
appear as parameters in the equations of ¢, and ¢,,, they are
opposite in sign and small under the assumption of large N,
large enough so that the initial frequencies of the oscillators
are closed packed. Therefore, in such case, taking into con-
sideration that e=K.(6/2) and the two possibilities *+Z; and
*+sin(¢;) associated with ¥Z,, and Fsin(¢,,), we add the

two equations for ¢, and ¢,, at K, to obtain

Z|+\Z L) A +|A
g~ |m|+_{| j |m|}. ©

2 2 4

In the evaluation of this equation, we have used the follow-
ing approximation for large N: K, sin(¢;,,)+K, sin(¢;_;)
=27,+2K, sin(¢py)—A;~27,4+2K, sin(¢py) for i=I,m. Here
we have omitted the A, in Z;, which are small quantities, thus
avoiding to return back to Egs. (3) and (4), then Z;~Z; for
i=Il,m. Such approximation will allow us to estimate the
parameters that € depends on, since, as we have mentioned,
knowing the values of the quantities |Z,| and |Z,,| will not tell
us which pair of oscillators, the one with index / or that with
index m, will have the phase-lock condition, unless we per-
form numerical simulations. Therefore, we arrive to an ap-
proximate expression for €=~ (|A,|+|A,,|)/8. Since the deriva-
tion of this quantity is based on an ansatz, it is now necessary
to check its validity. When we checked numerically Eq. (6),
we found a good fitting for large N with the values of K.
obtained from numerical simulations but for small values of
N, the value of K, calculated from Eq. (6) was larger than
that from numerical simulations by a quantity of order 107",
But, in order to get a more accurate expression for €, we
should not forget that we omitted a subtraction of the two
quantities A; and A,, from both Z; and Z,, respectively, in
order to arrive at Eq. (6). Therefore, we have to subtract
these two quantities A; and A,, again from the expression of
€ considering the two possibilities *=Z; and *sin(¢;) associ-
ated with ¥Z,, and Fsin(¢,,). In order to achieve this, we
notice that the quantity €, according to Eq. (6), is related to
the average of |A,| and |A,,|, which can also be written in
terms of the average between the maximum and minimum of
these quantities such that

LA+ A+ A+ A, (A +]A, = [A+ A,
€= . (7

+
2 8 8
Thus, we should investigate which quantities are more im-
portant to minimize this equation. We checked numerically

A numeric
124 O analytic
= analy
, 1.0
M
on
S 0384
061 slope = 0.41 +/- 0.05
0.4

12 14 16 1.8 2.0 22 24 26 28 30 32
log N

the calculated value of K, for the minimum value of Eq. (7)
and noticed that K, depends on the minimum [the second
fraction of Eq. (7)] and the accuracy of the calculated one is
in good matching with that obtained from numerical simula-
tions within an order of 1072—1073 for small values of N, and
it increases as N increases. Thus we obtain an approximate
expression for K., which we call K7, and is given by

o 1Z] AR IA - 18 A,
¢ 2 16 ’

(8)

Figure 3 summarizes the numerical simulations as well as the
calculations of K, according to Eq. (8). We plot log K, versus
log N from numerical simulations of Eq. (1) (triangles), from
the results given by Eq. (8) (circles), and from Eq. (5) taking
€ equal to zero (squares). The error bars correspond to the
spread of values of K, for all realizations of the different sets
{w;} for a given value of N, while the value of K, plotted is
one of these independent realizations. There is no average
plotted in this figure. The validity of Eq. (8) is clearly shown
for values of N ranging from 30 to 1000. The dependence of
K, on both |Z| and |Z,| as in Eq. (8) and as N increases
becomes clear. It can also be inferred that the term which
depends on € becomes negligible. This is due to the fact that
as N increases the oscillators of indices / and [+ 1 are getting
closer in frequencies to each other as well as the two oscil-
lators of indices m and m+ 1. We also observe that for finite
N, K. grows less than O(VW), which is found by Strogatz and
Mirollo" for the coupled oscillators in a chain of free ends.
In fact for coupled oscillators in a chain of free ends, the
asymptotic behavior is found by considering that the prob-
ability of synchronization of N oscillators is related to the
maximum excursion of a single pinned random walk (see
Ref. 15, Sec. 4), i.e., the probability depends on finding
max{|Z,]} for i=1,2,3,...,N-1. In their case such finding is
asymptotic and we do not expect it to be exact for finite N b
In our case of coupled oscillators in a ring, an equivalent
reasoning may complicate matters since K, depends on the
two quantities Z; and Z,,, where [ <<m, and the probability to
find a phase-lock solution is expected to depend on the av-
erage of the absolute values of these two quantities, which in
principle will lead to the value of K. growing with a lower
exponent than that in the case of chain of free ends, at least
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for finite N, as in Fig. 3. This is due to the fact that for finite
N, one of the values of either |Z]| or |Z,| agrees with
max{|Z][} for i=1,2,3,...,N and thus the other one will
have an absolute value less than max{|Z;|}. Consequently the
average value of both of them will be less than max{|Z]}.
Therefore, it is not expected that they will closely follow the
case of a chain with free ends for ﬁn_ite values of N, apart
from the fact that the result K.~ O(VN) for the case of free
ends is not exact in this case. ~ However, we expect from Eq.
(8) that K, will be of size O(VW), as N tends to infinity. The
fact that we have these two quantities |Z;| and |Z,,| may in-
duce us to think that we have two phase differences which
will have a saddle node bifurcation at K.. However, it is still
only one pair of oscillators according to Eq. (2) which has
the phase-lock condition. This can be verified via numerical
simulations since this pair will have a phase slip in the vi-
cinity of K.. But, we cannot determine which pair, either ¢,
or ¢,,, will have the phase-lock condition based only on |Z)|
and |Z,|.

Summarizing, if one knows the set of initial frequencies
{w;}, it is possible to point at the four oscillators at the bor-
ders of the major clusters just below K, and then the calcu-
lation of K, is performed using Eq. (8) (thus obtaining K?)
without the need of computer simulation of system (1), just
using the values of Z; and Z,,. If we are interested in deter-
mining which phase difference will have a phase-lock con-
dition *7r/2, we use the fact that sin(¢;) and sin(¢,,) have
opposite signs as well as they are maximum and minimum
among all values of sine of the phase differences. The sign of
the quantity sin(¢y) has the same sign of the quantity x;
=—(Z;+7Z,,)/2, which is taken from the sum of Egs. (3) and
(4) [eliminating for a moment the small difference between
sin(¢;) and sin(¢,,)]. Depending on the signs of Z; and Z,,
we know the signs of sin(¢;) and sin(¢,,), and hence the sign
of sin(¢y). Therefore, we count two quantities x,=* K
—-Z; and x3=*K!-Z,, positive sign for Z>0 and negative
sign for the reverse. Three cases will exist: first from the
quantities x, and x3, one is positive and the other is negative.
Thus depending on the sign of x; we choose either x, or x5 to
be K sin(¢y). Second x, and x; have the same signs, then
we check the minimum between |x;—x,| and |x;—x5| and
depending on which one is the minimum, we take either x, or
x3 to be K% sin(¢y). Third |x; —x,|=|x;—x3]|, then we take the
minimum outcome of x, and x3. Now we know the value of
K¢ sin(¢y) and its sign. Therefore, we know which equation
(3) or (4) will be used to give K. Thus we specify which
phase difference of index / or m would have *m/2. We
tested this method on the simulations we have done and it
matched the outcome of the numerical simulations.

The number of oscillators in each cluster at the vicinity
of K. can be determined once we assigned the indices /, [+1,
m, and m+1, in which we remind the reader, obtained from
Z; and Z,,, maximum and minimum values of the sequence
Z.'The size of one cluster of N, oscillators is determined by
counting the difference N;=(m+1)—I and the size of the
other cluster is determined as N,=N-N,. Similar to the cal-
culation of Z; and Z,,, we can determine other two quantities
Y =Nywy—27,, ,0; and Y2=N2w0—25=m+1w,<, taking into
consideration the periodic boundary conditions. It is found
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that |Y,|=|Y,|. These quantities are related to Z; and Z,, by
Y\=Z,~Z;==Y,. It is easy to show that K,=|Y,|/2+€
=|Y,|/2+e€. The two quantities ¥, and Y, provide a criterion
to understand synchronization-desynchronization at K. If
one arrives from above K, where all oscillators are synchro-
nized and have the same value of frequency, at K, the oscil-
lators split into two groups of Ny and N, at K, depending on
these two quantities Y, and Y,, where |Y,|=|Y,|. It is not
necessary for N; to be equal to N,. Both quantities Y; and Y,
have opposite signs since they refer to two groups of oscil-
lators (two clusters): one of them rotates with average fre-
quency above wg and the other has an average frequency
lower than w.

Comparing our findings of K. with the work of Daniels
et al.,"" our method has the advantage of finding the value of
K. without performing numerical simulations once we know
the set of initial frequencies {w;}. In addition we get the
condition of synchronization-desynchronization at K. and
obtain the number of oscillators in each branch in the vicin-
ity of K..

lll. CONCLUSION

We have analyzed the conditions of the phase differences
for the onset of complete synchronization at the critical cou-
pling strength in a Kuramoto-like model with nearest neigh-
bor coupling with periodic boundary conditions. Such analy-
sis allows us to determine the four oscillators located at the
borders of the major clusters (formed by successive oscilla-
tor) which will meet at the critical coupling to form one
cluster of all synchronized oscillators. With the help of these
findings and a justified educated guess we derive a math-
ematical expression for the critical coupling when all oscil-
lators will have the same frequency and phase differences
and instantaneous velocities become time independent. In
addition, we are able to determine which is the phase differ-
ence, which will have a phase-lock solution * /2. From the
derivation we also extract the size of the clusters before com-
plete synchronization. The expression for K. depends only
on the initial frequencies, through the quantities Z; and Z,,,,
where the indices / and m correspond to the borders of the
clusters. The quantities Z; and Z,, correspond to the maxi-
mum and minimum values of the sequence Z;. These quan-
tities in fact are related to the statistics of the distribution of
the set of initial frequencies {w;}, when this sample is ob-
tained from a Gaussian distribution, as shown by Strogatz
and Mirollo,15 for the case of a chain with free ends. A de-
tailed study within this context could shine light on the be-
havior of K, for finite N as well as N—, not just for the
case of a Gaussian distribution but for others. It will be in-
teresting to investigate the relationship that the quantities Z;
and Z,, and/or the quantities Y; and Y, have with the statis-
tical behavior of the system of periodic boundary conditions,
and how this approaches the case of free ends, but it is out-
side the scope of this study. This investigation plus extension
of the method to study cluster formation inside the tree will
be topics of further analysis. The advantages of the study
presented here are that we can determine the value of the
coupling constant that will synchronize the system of
coupled oscillators without carrying out numerical simula-
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tion as well as to determine the sizes of the clusters just
before this happens. Generalization of these results to differ-
ent couplings and boundaries is under investigation and will
be presented elsewhere.
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