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Abstract. We analyze the phenomenon of frequency clustering in a system of coupled phase oscillators. The
oscillators, which in the absence of coupling have uniformly distributed natural frequencies, are coupled
through a small-world network, built according to the Watts-Strogatz model. We study the time evolution
and determine variations in the transient times depending on the disorder of the network and on the
coupling strength. We investigate the effects of fluctuations in the average frequencies, and discuss the
definition of the threshold for synchronization. We characterize the structure of clusters and the distribution
of cluster sizes in the synchronization transition, and define suitable order parameters to describe the
aggregation of the oscillators as the network disorder and the coupling strength change. The non-monotonic
behavior observed in some order parameters is related to fluctuations in the mean frequencies.

PACS. 05.45.Xt Synchronization; coupled oscillators – 89.75.Hc Networks and genealogical trees
– 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 89.75.-k Complex systems

1 Introduction

Many physical, chemical, and biological systems are suit-
ably modeled as large populations of coupled nonlinear
oscillators [1,2]. In these models, each element is repre-
sented by an oscillator whose individual dynamics is de-
scribed by a differential equation. The interaction between
elements is introduced by coupling the evolution of their
degrees of freedom. In many cases of interest, the strength
of the coupling is given by a single parameter ε, but the
coupling pattern between elements may be quite differ-
ent depending on the nature of the interactions. In the
global coupling scheme, every element interacts with all
the others with the same strength [2,3]. Global coupling
arises whenever the interaction propagates over the whole
system in very short times as compared to the time scale
of the individual dynamics, and its range is larger than
the system size. Josephson junctions [4] and certain cat-
alytic chemical reactions [5] are typical examples. A local
coupling scheme is suitable when the interaction range
is short and the oscillators receive a significant input only
from their nearest neighbors [6]. Random coupling has also
been considered [7,8], where the pattern of interactions is
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modeled by a random matrix. The most prominent mani-
festation of collective evolution in these models is synchro-
nization. As the coupling strength grows, the oscillators
start to form synchronized groups, where one or more de-
grees of freedom of the different oscillators have the same
value and follow the same trajectory in phase space. Above
some critical value of the coupling strength, a phase tran-
sition occurs and all the oscillators become synchronized.
Much work has been devoted to the characterization and
understanding of the different aspects of synchronization
phenomena, for various dynamical systems and coupling
schemes [9–11].

Meanwhile, it has been pointed out that the network
of interactions in many complex systems displays features
of both ordered and random graphs [12]. In ordered net-
works the clustering coefficient is large, meaning that the
neighbors of a given node have a high probability of being
in turn mutual neighbors. In random networks the average
distance between two nodes is small as compared to the
system size, and grows with the logarithm of the number
of nodes. Watts and Strogatz have proposed a model that
interpolates between ordered and random networks and
displays these two features [12]. It has been shown that
high clustering coefficients along with short average dis-
tances are common to a variety of biological, social, and
technological networks. Also, it has been found that the
characteristic topology of these networks may have impor-
tant consequences on dynamical processes taking place on
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them [13–17]. Hence it is relevant to consider the effects
of network disorder on synchronization processes.

The synchronization of coupled oscillators on
Watts-Strogatz networks has been studied re-
cently [18–20]. The Kuramoto order parameter, quantify-
ing the degree of phase coherence in the population, has
been measured for different degrees of disorder. It has
been found that disorder enhances phase synchronization,
with the critical coupling strength decreasing mono-
tonically as the network disorder grows. In this paper,
we investigate the effects of disorder on the clustering
process that leads to synchronization of the time-averaged
frequencies.

2 Coupled oscillators on a Watts-Strogatz
network

The model consists of N phase oscillators whose
natural frequencies ωi are distributed with probabil-
ity density g(ω). The oscillators are coupled through a
Watts-Strogatz small-world network [12], which is built in
the following way. We begin with a regular linear array
of N nodes, where each node is linked to its K nearest
neighbors to the right and to the left. Periodic boundary
conditions are assumed. Nodes are thus arranged in a ring
with 2K links per node. We select a node and, with prob-
ability p, the link with its nearest neighbor to the right is
rewired to a randomly chosen node in the network. Self
connections and repeated connections are avoided. Then,
we move counterclockwise around the ring and repeat this
procedure with each node, until one lap is completed. This
process is then repeated with the second nearest neighbor
to the right of each node, and successively up to the Kth
nearest neighbor.

On each node of this network we place a phase os-
cillator [2]. The state of the oscillator is described by its
phase ϕi, whose individual dynamics in the absence of cou-
pling is given by ϕ̇i = ωi. Oscillators are coupled to their
neighbors in the underlying small-world network. The dy-
namics of the coupled system is governed by the equations

ϕ̇i = ωi +
ε

ki

∑

j∈Vi

sin (ϕj − ϕi), (1)

where ε is the coupling parameter, ki is the number of
neighbors of node i, and Vi is the set of neighbors of node i.
In the case of a regular network, p = 0, the system is a
ring of locally coupled oscillators [6]. For p = 1 all the
links in the network are rewired, and the coupling between
oscillators is completely disordered.

3 Average frequency clustering

In this paper we focus on the synchronization of coupled
oscillators in frequency space. Specifically, we consider the
time-averaged frequencies [6,21–23]

ω̄i ≡ 〈ϕ̇i〉τ =
1
τ

∫ τ0+τ

τ0

ϕ̇idt, (2)

Fig. 1. Synchronization tree for an N = 100 disordered net-
work, with K = 3 and p = 1. For this particular realization av-
erages are done over τ = 104 time units. As coupling strength
grows, the mean frequencies of different oscillators merge to
form clusters. Fluctuations become more important as ε gets
near its critical value.

where the time average is computed over an interval τ ,
after transients of length τ0 have elapsed. Both in glob-
ally and locally coupled systems, as the coupling parame-
ter grows and synchronization progresses, some oscillators
become entrained into clusters. Within each cluster, the
average frequencies ω̄i are identical. Our aim is to char-
acterize the cluster structure during the synchronization
transition, and analyze how this structure changes with
the disorder of the interaction network.

Clustering is clearly visualized by means of a syn-
chronization tree [21], where the average frequencies for
all the oscillators is plotted as a function of the cou-
pling strength ε. Figure 1 shows ω̄i vs. ε in a system of
N = 100 oscillators, on a completely disordered network
(p = 1). A detailed examination of the synchronization
tree reveals a rich variety of dynamical events. As we move
from left to right, the collapse of two or more lines repre-
sents the formation of a cluster of synchronized oscillators.
Occasionally, moreover, oscillators migrate between clus-
ters, performing large jumps of average frequency.

We also see in Figure 1 that fluctuations in the average
frequencies are very small at low coupling strengths and
grow with ε, attaining their largest value just before the
system synchronizes into a single cluster. To give a quanti-
tative estimation of this fluctuations for different network
architectures, we measure the time-averaged square devi-
ation 〈(〈ϕ̇i〉 − ϕ̇i)2〉 for all oscillators. Then, we average
over the whole system and over different realizations of the
small-world network with the same network disorder p, to
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Fig. 2. Fluctuations around the mean values of the average fre-
quencies. The curves correspond to different levels of disorder
in the network connections, as indicated. Simulation parame-
ters: N = 1000 and K = 3. Averages over 100 realizations.

get ∆, the mean value of fluctuations around the aver-
age frequencies. In Figure 2 we plot ∆ as a function of the
coupling strength, for representative values of the network
disorder p. Fluctuations grow from zero and then decrease
as the system attains synchronization of the average fre-
quencies. In disordered networks, fluctuations display a
maximum and then fall quite abruptly. For p = 0.1 and
p = 0 the decay of fluctuations is far more gradual. The
value of ∆ gives an estimate of the instantaneous fluctua-
tions of average frequencies. Moreover, the precision in the
value of each frequency grows with the averaging time τ .
Therefore, average frequencies are determined with a res-
olution of order (∆/τ).

To attempt a statistical survey of the cluster struc-
ture as the coupling strength and the disorder parameter
change, we must give a quantitative definition of clusters.
We consider that two oscillators are synchronized—i.e. en-
trained in the same cluster—if their average frequencies ω̄i

differ by less than a certain threshold δ0. We define the
cluster of element i as the set of elements j whose average
frequencies satisfy

|ω̄j − ω̄i| ≤ δ0, (3)

and denote its size, given by the number of elements in this
cluster, by σi. Note that even if j and j′ are in the cluster
of element i, it may happen that j′ is not in the cluster
of j. As we discuss below, the definition of this threshold
is crucial in the observation of the cluster structure, as the
relationship between fluctuations and this threshold can
alter the observed patterns.

At a given value of the coupling parameter, the oscil-
lators form clusters of different sizes. We denote by ρ(σ)
the density of elements in clusters of a given size σ:

ρ(σ) =
1
N

N∑

i=1

δ (σ − σi). (4)

Note that ρ(1) accounts for the fraction of elements that
are not yet entrained in clusters. The distribution ρ(σ)

gives detailed information on the cluster structure, and
provides an accurate picture of the transition for different
topologies of the network. A more concise quantitative
description is obtained by defining suitable order parame-
ters. Various ways to characterize the state of the system
as far as the cluster structure is concerned [24,25], and to
visualize the state of the system [6,21], have already been
considered in the literature.

We now introduce the fraction s of elements whose
cluster size σi is larger than one. This quantity accounts
for the number of elements that are already entrained in
clusters. This parameter is related in a simple way to the
fraction of elements that have not yet entrained with any
other element: s + ρ(1) = 1. For the uncoupled system we
should have s = 0, as the oscillators do not form clusters.
However, if the oscillators have close natural frequencies
and the frequency space is crowded enough, some clusters
may appear even in the absence of coupling, depending
on the value of the threshold δ0. On the other hand, it is
expected that for sufficiently strong coupling all the oscil-
lators are in clusters of at least two elements, and s = 1.
Still, this does not mean that complete synchronization
has been attained.

An order parameter able to detect complete synchro-
nization is the fraction d of pair distances |ω̄j − ω̄i|, mea-
sured in the space of average frequencies, which are smaller
than δ0. An alternative order parameter is the ratio q of
clusters with σ ≥ 1 to the total number of elements. This
parameter equals the total number of particles (clusters
plus non-entrained oscillators) over N . It differs from s
because it includes isolated elements.

Finally, the number of clusters C with σ > 1 gives yet
another way to describe the state of the system during
the transition. As the coupling strength is increased from
zero, clusters start to form and the value of C grows. On
the other hand, as complete synchronization is approached
for large values of ε, the number of clusters must decrease
to one. Thus, the plot of C vs. ε is expected to display a
maximum for some value of the coupling strength.

4 Numerical results

We have performed extensive numerical simulations of the
system in order to characterize the influence of disorder in
the clustering process that leads to synchronization. The
results presented in this section correspond to networks
of N = 103 oscillators and connectivity K = 3. In all
cases, averages have been performed over more than 102

realizations. For each realization we generate a new small-
world network, and new random values for the initial
phases ϕi(0) and for the natural frequencies are chosen.
Natural frequencies are uniformly distributed in the in-
terval (ω̄ − δω, ω̄ + δω), with ω̄ = 1 and δω = 1. Be-
cause of the rotational symmetry of the system, in fact,
the value of ω̄ can be fixed arbitrarily without generality
loss. As for the frequency dispersion, it is known from the
case of globally coupled oscillators that increasing δω re-
sults in a higher coupling strength at the synchronization
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Fig. 3. Time dependence of order parameter d, on N =
1000 networks, with K = 3. Time averages are computed every
τ = 100 units of time. In the top panel p = 0 and the curves
correspond to ε = 4, 6, 9, 12 and 20, from bottom to top. In
the central panel p = 0.1 and the curves correspond to ε = 1,
2, and 3. In the bottom panel p = 1 and ε = 0.5, 1, and 1.5.

transition [3]. The same behavior is found in our model,
though we do not discuss such effect in detail.

We integrate numerically the equations of motion (1)
using a fourth-order Runge-Kutta algorithm. The time
step is δt = 0.1 in most cases, and δt = 0.01 when it is
necessary to integrate for longer times, as for p = 0. The
time unit is defined as δt−1 integration steps. We compute
the instant value of the frequency of each oscillator as the
right hand side of (1) at each time step, and calculate its
average following equation (2).

In disordered networks, with p > 0, transients are rel-
atively short. In Figure 3 we plot the time dependence of
the parameter d for different network disorders and var-
ious coupling strengths. The time-dependent value of d
has been calculated by averaging over 100 time steps. For
p = 0.1 and p = 1 transients are always much shorter
than 103 time units, regardless of the value of the cou-
pling strength. On the other hand, for ordered networks,
p = 0, much longer transients occur in the intermediate
coupling regime, as seen in the top panel. Accordingly, we
have waited for 103 time units before starting to record
the frequencies on networks with p > 0, while we have
used adaptive transient times on ordered networks.

Fig. 4. Non-monotonic behaviour of q(ε). The particular fea-
tures of the clustering process depend on the value of the
threshold δ0. Results obtained with N = 1000, K = 3, and
p = 1. Time averages done over τ = 4000 time units. We also
plot ∆ for reference (bottom curve).

4.1 Effects of frequency resolution and average times

It is beyond the scope of this paper to present an exhaus-
tive study of the effects induced by the variation of the
threshold δ0. Nevertheless, it has to be stressed that the
value of δ0 is of crucial importance for the description
of the synchronization transition, as it defines the size of
clusters. As we see below, it can alter significantly the ob-
served cluster distribution. A large value of δ0 results in
the detection of spurious clusters even at very low cou-
pling strengths. In fact, the natural frequencies lie closer
to each other if we keep fixed the distribution g(ω) and
increase the number N of oscillators. As the value of δ0 is
decreased, a higher coupling strength is needed to bring
the oscillators to such short distances in frequency space.
In any case, the threshold should be larger than the resolu-
tion in the average frequencies which, as discussed above,
is of order ∆/τ .

Figure 4 shows the behavior of the order parameter q
as a function of the coupling strength ε for different val-
ues of the threshold δ0, in a disordered network. Time
averages have been performed over τ = 4000 time steps.
A sharp transition occurs at ε ≈ 1.6, regardless of the
threshold value. For the smallest value of the threshold,
δ0 = 10−5, the order parameter remains almost constant
until the transition. But we see that as the value of the
threshold is changed to δ0 = 10−4, a non-monotonic be-
havior develops. This may seem striking at first sight, since
it is expected that increasing the coupling strength should
result in a reduction in the fraction of particles, as more
and larger clusters are formed and more distances become
smaller than δ0. Instead, we find that the value of q(ε)
rises around ε ≈ 1, before the system undergoes the syn-
chronization transition and all distances fall below δ0. This
non-monotonic behavior is related to the size of fluctua-
tions in the average frequencies. Their growth makes some
oscillators to leave their clusters, as the distances between
pairs are no longer below the threshold. Finally, when the
threshold is large enough (δ0 = 10−3 in the figure), a
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Fig. 5. Non-monotonic behaviour of q(ε) for different time
spans τ , as indicated. Here the value of the threshold is the
same for all curves, δ0 = 10−4, and simulation parameters are
N = 1000, K = 3 and p = 1. When averages are done over
short time spans, large fluctuations prevent the oscillators from
forming clusters at low coupling strengths, until the transition
point. For larger time spans, fluctuations are smaller at low
coupling values and the system shows an early clustering pro-
cess, with a non-monotonic behaviour as fluctuations overcome
the precision of the time averages. Numerical results for the
fluctuations ∆ are also shown (bottom curve).

wealth of spurious clusters exist even in the absence of
coupling, simply because the natural frequencies are too
crowded to be discriminated by the threshold.

A similar situation is found in Figure 5. Now the value
of the threshold is kept constant at δ0 = 10−4, and the
time span τ is varied. For short time spans, a mono-
tonic decrease of the fraction of particles is observed,
with a sharp transition around ε ≈ 1.6. For larger values
of τ , however, fluctuations are reduced for low coupling
strengths, and q decreases rapidly. But above some cou-
pling strength the time span is no longer enough to reduce
the large fluctuations occurring as the critical value of ε is
approached. Consequently, q starts to grow again until the
critical coupling is attained and the system synchronizes.

4.2 Clustering and synchronization

We have shown that the relationship between the time
span τ and the value of the threshold δ0 plays a crucial
role in defining the observed cluster structure and the par-
ticular features of the transition. In the following we fix
τ = 4000 to compute the time averages ω̄i, and δ0 = 10−4,
satisfying the relation δ0 > ∆/τ .

In Figure 6 we show the dependence of the order
parameters s and d with the coupling strength ε. We
first discuss the behavior of s for highly disordered net-
works, p = 0.4 and p = 1. The fraction of elements
in clusters grows with the coupling for small values of
ε. Around ε = 0.5, s attains a maximum and starts to
decrease. At this point, the growing fluctuations have be-
come strong enough to destabilize the already formed clus-
ters, and the number of entrained oscillators falls. Look-
ing back at Figure 2, we see that for p = 1 fluctuations

Fig. 6. Order parameters as a function of coupling strength
for different networks. The plot of s vs. ε is shown in the top
panel. In the bottom panel we plot d vs. ε. See discussion in
the text. Simulation parameters: N = 1000, K = 3, τ = 4000
and δ0 = 10−4.

grow with ε until a maximum is reached, and then de-
cay abruptly. The coupling strength is then sufficient to
overcome the fluctuations and bring the oscillators back
together. The value of s grows to one as all the oscillators
are entrained into clusters.

For regular networks, on the other hand, the value
of s grows steadily in a monotonous way from zero to
one. In this case, fluctuations are not enough to produce
a non-monotonic behavior of the fraction of entrained os-
cillators. However, we do observe a bump, around ε = 1,
where the largest fluctuations occur (see Fig. 2). Networks
with p = 0.1 behave qualitatively as regular networks, as
far as the number of entrained elements is concerned.

The order parameter d, on the other hand, character-
izes the transition to complete synchronization. For low
coupling strengths, d remains close to zero, regardless of
the topology of the network. For disordered networks a
sharp transition is observed in a narrow range of the cou-
pling strength. Above this transition we find d = 1, with
all the elements in the same cluster, and all pair distances
smaller than the threshold δ0. Here it is clear that large
disorder favors synchronization, as it has been already
pointed out [18].

The fraction of distances below the threshold increases
far more slowly on more regular networks, as in the case
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Fig. 7. The number of clusters C grows as coupling parameter
is increased from zero, and after reaching a maximum value it
decreases again to one, as complete synchronization is attained
in the average frequencies. The fall of the number of clusters is
shown to be steeper for more disordered networks. Simulation
parameters as in Figure 6.

of p = 0.1 and p = 0. In particular, in the case of p = 0
this growth is very slow and it is not seen here for reasons
of scale (see Fig. 9 below). We also find that the decay
of fluctuations is slower for regular than for disordered
networks (see Fig. 2). Turning back to the top panel of
Figure 6, it is clear from the behavior of s that the clus-
tering process starts at low values of the coupling. Now
we see that these small clusters account for a very small
fraction of the total number of pairs, resulting in a small
value of d. It is remarkable that in the low coupling regime,
the fraction of entrained elements grows faster for regular
networks, but then fluctuations decay slowly and the frac-
tion of entrained pairs grows slower for higher coupling
strengths.

The total number of clusters during the synchroniza-
tion process is shown in Figure 7 for the same realizations
as in Figure 6. The value of C increases rapidly in the
first stage of the process, as the oscillators gather together
forming many small clusters. When nearly all the oscilla-
tors belong to a cluster (σi > 1 for all i), the number of
clusters starts to decrease until only one cluster remains.
We find that for disordered networks C remains at a large
value until it drops abruptly at the synchronization transi-
tion. This behavior is less abrupt as the network becomes
more ordered. On regular networks, the number of clusters
remains high for a wide range of coupling strengths.

Comparing the plots of d and s gives additional in-
sight on the clustering process. For regular networks the
value of s grows rapidly while d remains small. This is an
indication of many clusters being formed, but with a few
elements in each one. The large value of s implies that
almost all the elements are in clusters of at least two ele-
ments, while the small value of d means that a relatively
small fraction of the pairs are at distances smaller than the
threshold. For disordered networks, on the other hand, the
clustering process seems to take place more abruptly, with
the fraction of synchronized pairs growing fast, as soon as
the condensation starts. Figure 8 shows the plot of d as a
function of s. We see that in the intermediate range, when

Fig. 8. Plot of d vs. s for different levels of network disor-
der. Disordered networks are closer to the identity function.
In regular networks, s grows almost to one before d presents a
significative change. The data plotted here is the same than in
Figure 6.

the clustering process is developing, the values of d and s
are closer in disordered networks. In regular networks, on
the other hand, s grows almost to unity before d undergoes
any significant change.

In Figure 6 we have shown the order parameters sepa-
rately in order to compare results for different values of p.
The plot range is limited to low coupling values, leav-
ing the transition for p = 0 networks out of view. Fig-
ure 9 shows the order parameters for p = 0, 0.1, and 1,
over a broader range of coupling strengths. In ordered
networks clustering starts at very low coupling strength,
and s grows fast as q decays until almost all the oscilla-
tors belong to some cluster. The value of d grows much
slower, as stated above. For disordered networks, on the
other hand, we find that all three order parameters have
relatively sharp transitions. Nevertheless, there is a differ-
ence between s and d, as already discussed in the previous
paragraphs.

So far, we have focused on the clustering process as
the coupling strength changes, for different types of net-
work architecture. Now we consider the dependence of
the order parameters as a function of network disorder,
when the coupling strength is kept constant. As can al-
ready be anticipated from Figure 6, some order parameters
should present a non-monotonic behavior as a function
of p. Such a non-monotonic dependence with the network
disorder has already been observed in a variety of phenom-
ena, including neural networks [16], biased diffusion [26],
and even in networks of coupled oscillators [27]. In Fig-
ure 10 we show plots of q vs. p for selected values of the
coupling strength, representative of different regimes. For
weak coupling, ε = 1.5, the fraction of particles grows
as the network disorder varies from p = 0 to p ≈ 0.4,
and then presents a slight fall. The situation changes for
higher coupling strength, ε = 1.75 and ε = 2.0, where the
non-monotonic behavior is more evident. The maximum
of q(p) shifts to the left and becomes smaller as ε grows.
Here we find again that the non-monotonic behavior is re-
lated to the fluctuations in the average frequencies. For
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Fig. 9. Order parameters for different networks, with
N = 1000, K = 3 and (a) p = 0, (b) p = 0.1, (c) p = 1.
The whole transition range is presented here for p = 0 and
p = 0.1.

Fig. 10. Fraction of particles vs. network disorder for net-
works with N = 1000, K = 3. The curves present a maximum
at intermediate values of p. The non-monotonic behaviour is
related to fluctuations in the average frequencies.

low coupling values, disordered networks display larger
fluctuations. However, more disordered networks synchro-
nize before, and thus q decays to zero when ε is above the
critical value.

Finally, we present some selected results for the distri-
bution of cluster sizes (Fig. 11), in networks with p = 0,
0.1, and 1. For regular networks the cluster size distribu-
tion ρ(σ) has an exponential decay for low coupling val-
ues, and broadens for larger values of ε, getting close to
a uniform distribution around ε = 6. This suggests that a

Fig. 11. Distribution of cluster sizes for different network ar-
chitectures, and for some representative values of the coupling
strength. In the top panel p = 0, in the center panel p = 0.1,
and in the bottom panel p = 1. Parameters: N = 1000, K = 3,
τ = 4000, δ0 = 10−4, and averages over 1000 realizations.

mixture of many cluster sizes coexist in the intermediate
range of coupling strength. As the coupling is increased
from zero, clusters of all sizes are formed and merge sub-
sequently. For p = 0.1 the cluster distribution is similar
at low coupling strengths, but for intermediate values of ε
it becomes bimodal, with a large number of small clus-
ters and a maximum at high cluster sizes. For p = 1, the
situation is even more evident. As coupling increases a
minimum develops at intermediate cluster sizes. The dis-
tribution seems to fall as a power law for small cluster
sizes and then has a maximum for large cluster sizes. This
indicates that, as coupling grows from zero to its critical
value, a large cluster is formed that captures the remain-
ing oscillators and small clusters.

5 Summary and discussion

We have considered a network of coupled phase oscilla-
tors. The natural frequencies are drawn from a uniform
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distribution, and the oscillators are coupled through a
Watts-Strogatz small-world network. We studied the syn-
chronization process in average frequency space. Defin-
ing adequate order parameters, we investigated the cluster
structure as the disorder of the network p and the coupling
strength ε change.

We have shown that the observed features of the clus-
tering transition are sensible to the threshold δ0 that de-
fines the cluster size, and the time span τ over which
average frequencies are computed. We observed a non-
monotonic behavior, both as a function of p and ε, and
we found it to be related to the fluctuations in the av-
erage frequencies. In fact, when average frequencies are
measured over a relatively short time span, fluctuations in
their values prevent the oscillators from forming clusters.
When averages are done over larger time spans, fluctu-
ations are reduced and clusters are formed at low cou-
pling values, but these clusters are destabilized as the
coupling strength increases and fluctuations become larger
(see Figs. 4 and 5).

We have studied extensively the synchronization tran-
sition for particular values of τ and δ0. First we investi-
gated the dependence of the order parameters with cou-
pling strength, when network disorder is kept constant.
We found, as previously reported [18], that disorder en-
hances synchronization. In regular networks, the fraction
of oscillators in clusters grows quite rapidly, while the
number of total pairs closer than the frequency threshold
grows much more slowly. This indicates that many small
clusters are formed at low coupling values, and gradually
merge as the coupling strength is increased. The cluster
size distribution shows that in the intermediate coupling
range there are clusters of a variety of sizes, support-
ing this picture. For disordered networks the transition is
sharper than for regular networks. Both the relationship
between the order parameters s and d, and the cluster size
distribution ρ(σ), seem to indicate that, as the coupling
strength is increased a large cluster is formed. This clus-
ter grows as the remaining oscillators and smaller clusters
merge with it. When the coupling strength is fixed, the
dependence of the order parameters with network disor-
der p also shows an interesting non-monotonic behavior.
This kind of behavior, which has been also found in other
instances of dynamical systems, finds here its cause in the
increasing of fluctuations.

A further study of the model we have presented should
consider system size dependence. A careful determination
of the critical values of ε and p, by means finite size
scaling analysis, should allow us to build a detailed phase
diagram. It would also be interesting to consider some
extensions of the model. In particular, it should be of
interest to contemplate link dynamics, where the inter-
play of oscillator dynamics and network linking could lead

to the emergence of network structure. This is clearly an
important aspect for the study of dynamical systems with
complex networks of interaction.

The authors wish to thank G. Abramson for fruitful
discussions.
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