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We investigate a system of coupled phase oscillators with nearest neighbors coupling in a chain with
fixed ends. We find that the system synchronizes to a common value of the time-averaged frequency,
which depends on the initial phases of the oscillators at the ends of the chain. This time-averaged
frequency decays as the coupling strength increases. Near the transition to the frozen state, the
time-averaged frequency has a power law behavior as a function of the coupling strength, with
synchronized time-averaged frequency equal to zero. Associated with this power law, there is an
increase in phases of each oscillator with jamps with a scaling law of the elapsed time between
jumps. During the interval between the full frequency synchronization and the transition to the
frozen state, the maximum Lyapunov exponent indicates quasiperiodicity. Time series analysis of
the oscillators frequency shows this quasiperiodicity, as the coupling strength increa2883©
American Institute of Physics[DOI: 10.1063/1.1611851

Systems of interacting units represent problems in many  with natural frequencies; selected randomly from a normal
fields, such as physics, chemistry, biology, neurophysiol- Gaussian distribution,k is the coupling strength,i
ogy, and engineering. They have been used to model phe- =12, .. N, 6, is the instantaneous phase ahdhe instan-
nomena as diverse as Josephson junction arrays, multi- taneous frequency. Such oscillators with nearest neighbors
mode lasers, vortex dynamics in fluids, biological interaction appear in Josephson junctions, laser arrays and
information processes, and neurodynamics:® One of the  phase-locked loop@ These nonidentical oscillators cluster
interesting phenomena observed in these systems is that in time averaged frequency, until they completely synchro-
the interacting oscillators synchronize themselves to a nize to a common value of average frequency. Using periodic
common frequency. Particularly, these systems show an houndary condition®;, = 6;, and scaling the frequencies
extremely complex clustering behavior as a function of gsych that
the coupling strength: partial synchronization or total N
synchronization, phase synchronization as well as lag 1
synchronization, etc’~* Although the dynamical systems NZ =0
describing the above mentioned phenomena are quite dif-
ferent, there are general features that can be described the above systertl) of N oscillators, has a critical coupling
using a simple model of coupled phase equations. strengthk=Kk., where fork>k., a complete frequency syn-
chronization can be observed wheie=0. In addition each
0, is locked to a fixed value. Fdt<k., no phase locking

. INTRODUCTION can occur andg;(t) is nonzero and time dependent. Fre-

The vast literature in these field do not allow us to bequency synchronization between the individual oscillators
fair, but we believe most of the well known examples can becan be observed in the time average se(@¢=(6;), i
covered by referring to Refs. 15-20, as well as to the previ< j, where
ous references.

. . : . 1(T.

In spite of the extensive exploration of the dynamical ()= "m_f f,(t)dt. 3)

behavior of coupled chaotic systems that show synchroniza- YorleT o

tion phenomena, many interesting features remained . _
unknown?L22 Recently, Zhenet al?® studied the complex In this case, whek<k., the system has clusters of oscilla-

synchronization tree of a system of oscillators with nearestors of the same average frequencies. Reducing further the
neighbors interactions, modeled by coupling strengtlk, the number of units of the same average
frequencies decreases until finally all oscillators become with

2

. k their natural frequencies through a complex structure. Also
=i+ =[sin(6;,,— 6;)+sin(6_;— 6 1 . " . ' '
0i=w 3 [SIN(0;1= 0)Fsin(6; -1 = 60)], @ it has been found near the critical couplikg(near the tran-
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system freezes an@ =0, depends on the constraint param-

eter (4) and how muchw, differs from zero. It should be

noted that whemy=0 is used, theks=Kk. also for the chain
B A A A A A with fixed ends. Finally we will show that &t , although the
system has a common average frequency, it does not show
phase slip features. However, these phase slip features ap-
pear near the critical valuk, when the system goes to the
frozen state. Nedk. each phas#,(t) of the oscillators will
have an intermittent sequence ofr 2umps. In this region
neark. we can also define a power law behavior for the
dependence of, which is the time of duration of each phase
slip, and(#,), on [k.—k]. We aim at understanding the
physical origin of such intermittency near the transition and

to a zero frequency while maintaining the periodic boundar;}]ow this power law behavior is related to the phase jumps.

conditions. When this constraint is not used, the general feat—h ;rh'f pape; Itf] o;gamzed as foII(r)]ws:.mt_Sec. f”’ we show
tures of the system will not be changed and the synchroni- € Teatures ot the frequency synchronization o _sys(té}n
In Sec. lll, the temporal behavior of frequencies of the

zation occurs via the same transition tree to a common fre . Lo . . .
quency value coupled oscillators is investigated. Section IV is devoted to

explore the phase slip near the frozen state. In Sec. V a
conclusion is given.

FIG. 1. Chain of oscillators with fixed ends.

sition to a common average frequeh®/multaneous quan-
tum slip features of the phases of the oscillators. The con
straint(2) in the case of systeifi) limits the synchronization

1 N
wo= iNIZl wj . (4)
Il. FEATURES OF FREQUENCY SYNCHRONIZATION
If we lift the periodic boundary conditiod, ;. y= 6, and ] ) ] . )
at the same time two neighbor oscillators are connected to [N this section we study the behavior of a chain of oscil-
fixed ends, the ring of the oscillators becomes a chain witti2ors with fixed ends. In Fig. 2, we show the time averaged
fixed ends. As shown in Fig. 1, first and last oscillators carfféguency as a function of the coupling strengtfor a sys-
be simply imagined as if they were joined to walls. Now t€m of 16 oscillators. The main part of Fig(aZ shows the
system (1) has the property;_,=C,, wherei=1 and Synchronization tree, which has a complex structure. We no-
On+1=Cy . For simplicity (1) can be written as set of three tice clustering in frequency occurs, with the size of the clus-
groups of equations ters increasing, until &=Kks, the oscillators form a coherent
state in time-averaged frequency, with an average frequency
different fromwg. It is observed that the formation of clus-
ters of the same average frequency occurs due to the nearest
neighbors interactions, where elements which are closer in
H = Ko K o space and closer in initial frequencies cluster finstmber of
b=t gloBia =) I+ gleinfi-a =60, © oscillators are indicated in Fi 2425 [
g(@]. We see from Fig.
_ K K 2(a) that, increasing the coupling strength, the value of the
On= N+ §[sin(CN— On) 1+ §[sin( On_1—0N)] average frequency decays. The rate of decay becomes stron-
ger ask increases until the average frequency reaches zero at
We will see that this system possesses quite different featur@s . Fork=k, the system is frozen Withi =0. We observe in
and characteristics than those of a ring. We expect that, undgiig. 2(b) the same feature as Fig(a? but for smaller cou-
the influence of coupling it will synchronize in frequency pling strength. It is interesting to understand why the syn-
through a tree with the general features of that of@g.and  chronization frequency & occurs at a lower value thang
there will be a critical value of the coupling strength at whichand why the value of the average frequency decays when the
the system possesses a common average frequency. We wibupling strength increases. A clear answer for such ques-
see that, in spite of not being intuitive, constrai@ will  tions will be left to the next section since the exploration
make us miss some information about systésn that is, needs some investigation of the temporal behavior of system
when oy # 0, the oscillators will synchronize to a common (5) for k=k;. In the inset of Fig. &) we show the behavior
average frequency not equal te,. Also, as the coupling of w, versusk, for different distributions of initial frequen-
strength increases, this average-frequency will start to decayjes. Notice that fow=0, k. has its minimum value and it
to the frozen state, where all frequencis=0, and this de-  coincides withks. The synchronization tree is independent
cay will show unexpected properties. We will study how all of the initial conditions for the phases for all values lof
this occurs. In particular, we will show that the average fre-except in the vicinity ofk., the value of the coupling
guency synchronization occurs at a vaKdla);twoa& 0,i.e., strength for whichd=0. In Fig. 2a) (main frame and insgt
there is a critical value of the coupling strength, we catkit ~ another feature is shown, which is the dependence of the
where frequency synchronization between all oscillators ocvalue of k; on the initial distributions of the phasesd;
curs while the phases of the oscillators are not lockedk At  =|6,— 6J-| in the interval[0,2]. Notice that for different
the value of( ;) depends on the phases of the oscillators ainitial distributions of the phases, the rate of the decay of
the ends. We will also show that the valuelgf, where the (6;) varies changing the value of the critical couplikg In

. k k
01= w1t E[Sin( 0,— 61) ]+ §[Sin(C1_ 011,
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FIG. 2. Synchronization tree of time-averaged oscillators frequencies vers
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the inset of Fig. &) we show the same dependencykgion
initial phases for another set of the distribution &fv;;
=|w;— w;|. Figure Zb) has been obtained with the same set
of initial conditions for the distribution of phasest;; =| 6;

—6j| in the interval[0,27], and for unevenly spaced initial
frequenciesA wj; , i.e, different values of the constraint pa-
rameterwg. In order to understand whly. depends on the
initial conditions of phases, we plot Fig. 3. This figure shows
the dependence &, on the initial phases of the two oscil-
lators at the ends of the chain far,=0. In fact we choose
only the first and the last oscillators since according to Eq.
(5) the frequencies of these two oscillators have a stronger
dependence on the phases of the oscillators at the ends than
any other oscillators in the chain, which have frequencies
depending on the phase differences of neighboring oscilla-
tors. On the other hand the initial phases of the two oscilla-
tors at the ends represent two constants in the int@dv2air],
which can be replaced by any two arbitrary constants in the
same interval, as will be clear in the next section.

As we have seen from Fig. 2 by inspection of the syn-
chronization tree, there appears to be a universal behavior of
the time-averaged frequency of the oscillators in the vicinity
of k.. We have studied this region carefully for many values
of the constraint parametar,, for different distributions of
initial frequenciesA w;;, and for different initial conditions
for the phased ¢;; . The results are plotted in Fig. 4 where a
perfect scaling can be observed and the time-averaged fre-

quency scales with the coupling strength {a&)~|kc
—k|%® The exponent has been calculated within an error
+0.02. This kind of exponent gives an indication of the
occurrence of a saddle node instability. This transition may
indicate that in the vicinity ofk. there is a quasiperiodic

Yhotion and the system goes to a periodic motion and each

oscillator locks in phase &, .%1?32%To figure out such char-
acteristics, we will calculate the maximum Lyapunov expo-
nent(at the end of this sectigrio see how it behaves with
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FIG. 3. Dependence &f, on the initial values of phases
of the first and theNth oscillators, which are represent-
ing two arbitrary constant values in the intery@|2sx].
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increasingk. In addition, in the next section we shall study
some features of the frequenciésas a function of time,
which serve to clarify the scenario.

In order to look at the qualitative picture of the phases
oscillators under the influence of coupling, we have plotte
the average of Kuramoto order paramet{®),”® Fig. 5,
where

: (6)

N
> €l
=

For wy=0, (R) quickly increases exponentially aftey, and
there is no complete synchronization in phase sifRe* 1

aol
N
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FIG. 6. Maximum Lyapunov exponent fas,=1.34. The inset shows the
maximum Lyapunov exponent fas,= 0.

fjt fails as the coupling strength increases. It also indicates
0 i . .. . .
C}hat oscillators may have a quasiperiodic motion until the

coupling strength arrives to the value kyf. In order to see

the behavior of the chaotic, quasiperiodic and periodic mo-
tions of the system, we have plotted in Fig. 6 the maximum
Lyapunov exponent versus the coupling strength. We observe
that the system is chaotic during the transition tree and, while
clusters of oscillators of common average frequency are
formed and it goes to quasiperiodic motion néar The
reason why systertb) is chaotic in the interval (&k=<kg)

which means that all the oscillators do not have the samevas thoroughly explained in Refs. 21, 23. We do not expect

phase. However, the exponential growth afkgrindicates
that the oscillators may lock in phase difference. gy

the maximum Lyapunov exponent to be negative and the
system to be periodic aftds; (see also the observation from

#0 it seems thatR) always increases exponentially after Fig. 5. The only case when the maximum Lyapunov expo-

k.. Figure 5 also shows that whes,+ 0, there is an indi-

nent is negative akg, is whenwy=0. This is clearly ob-

cation of a loss of coherence of the phase locked state aftgerved from the inset of Fig. 6. As shown from Fig(rBain

ks. This is clearly observed when the shift ©f, from zero
becomes large. This may indicate that syst@ntries to go
to a phase lock state and frequency synchronizatidq atit
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FIG. 5. Order paramete(R) versus the coupling strength for different
values of the constrainb, .

frame), the fluctuation of the maximum Lyapunov exponent
around zero nedkg is small, which may mean that the sys-
tem tries to undergo a quasiperiodic to periodic transition at
ks. However, it fails and the fluctuation in the maximum
Lyapunov exponent increaseslkascreases until the vicinity

of k.. It is therefore interesting to investigate the dynamics
of the motion of the oscillators of syste(B). The study of
the spatiotemporal behavior will help us to interpret what
happens in the intervaét;<k<k.. Particularly, it gives a
deep insight towards the understanding of how the oscillators
follow the two oscillators at the ends of the chain and how
the frequency decays to the frozen state following a power
law behavior near the vicinity df;.

lll. TEMPORAL BEHAVIOR OF FREQUENCIES OF
THE OSCILLATORS

In this section we do further quantitative analysis and
study the temporal behavior of the frequencies of the oscil-
lators at several values &&=k, . This study has been done in
order to understand some of the observed features in the
synchronization tree fok=kg. Particularly, we try to find
answers to the following questionsWhy do all oscillators
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at ks have a common average frequerﬁéW)#wO?Why does the average value of each part to a final negative value,
this average frequency decay as the coupling strength inwhich in turn reduces the value af; to the value of 6;) as
creases? And, why, near the critical coupling, ldoes there  observed from Fig. 2. We have checked this behavior with
exist a power law behavior for the value(@) as a function ~ several values o, andCy, and we found the same behav-
of k, when k approaches;kand the system goes to the frozenior. The only change occurs to the valuekgfas indicated in

state? the previous section. It is clearly seen from Eg). that due
According to Eq.(5) atk; all oscillators have a common to different values oC; andCy, we find different values of
average frequency value, which is given by k. (see Fig. 3 for the sameA wy; .
N " Now we arrive to answer the second question, i.e; we try
<'gi>:<'9>: %{z w;i+ §<Sin(C1— 6,)) to understand why the average frequerbq;)decays to zero.
i=1 Figures Ta)—7(h) show the part of the time series of the two

contributions to the phases of oscillators 1, 8, 13 and 16. We
) (7) have chosen these oscillators in order to find a reason for the
decay in the average frequency that may pass through the

+(Sin(Cy— 6y))

To facilitate the discussion let us define oscillators due to the nearest neighbor interactions. This can
be done examining the behavior of each part for the first
Aizk(sin( 01— 0), oscillato.r, one of -the middlg os.cillators near to -the first, one
3 of the middle oscillators which is far from both first ahidh

K oscillators, one of the oscillators which is closer to i
Bi=§(sin( 0;_1—6)), (8)  oscillator and finally theNth oscillator. As shown from Fig.

7, itis clear that both oscillators at the ends of the chain have
such that for each oscillata is given by the addition of the the higher fluctuations in frequency among all oscillators.
three quantitieso; , A; andB; . A; andB; have the following Due to the nearest neighbor interactions these fluctuations
properties: A;=—B;,; for i=1,2,... N-2 and Ay_; are transferred(by diffusion to other oscillators, which
= —By. Therefore, ak, all terms cancel each other except Weaken as we go towards the center of the chain, and they

B, andAy. It is clear from the above equation thagt) ~ &PProximately vanish in the center of the chdeg., 8.
depends on the phases of the two oscillatarg(t) and Therefore, the situation & could be as follows: oscillators
6y(t), at the ends of the chain, since takiig= Cy=0 does  at the middle_syljchronize and would prefgr to go from_ a
not change the behavior of the synchronization tree. The vaftate of quasiperiodic to a state of periodic motion while
ues ofC; andCy can be the initial phases of the first and oscillators at the two ends of the chain cannot match this
Nth oscillators or can take any values in the intef\Pr]. motion. As k increases the oscillators at the ends, which
Now, what appears to be a dependencéobn the initial ~ POSSess large fluctuations in their frequency, drive other os-
phases is due to the values of phases next to the fixed endillators to follow them. As the coupling strength increases,
Now, let us try to find an answer to the first question.We expect that the fluctuations in the frequencies of the two
The behavior of the two terms in E¢7) which depend on €nd oscillators increase and their effect will extend to the
the phases of the first and last oscillators should be negativa@iddle oscillators through the local interactions. This in turn
on the time-averaged in order to reduce the valuagfto drives the other oscillators frequencies to fluctuate stronger
the value of #) atks (see Fig. 2 This behavior is due to the around the average. Figuresap-8(¢) show theA and B
fact thaté, (t) and fy(t) fluctuate to lower and higher values Parts of oscillators 1, 3 and @ince 13 and 16 have similar
around a given average, independent of the value,aind ~ features on the average as 3 and 1, respeclivaly shown
Cy. The fluctuations of phases may be towards the lowefrom this figure the fluctuations in the frequency of the first

value more than the higher such that finally the average valescillator increases and its larger contribution comes from

ues that contribute t0¢;) are negatives. In order to see this 5’]1’ ;Yg'ch Iov_vetrs thf. vallt;etof thet?]verag(_e”frtequetr;]cy.ﬂDute to
clearly, we look at the two parts of E¢7) which are coming € diftusive interaction between the osciliators, the Huctua-

originally from the second term of the frequency of the firsttIons travel along the chain until f_mally dr'\./@‘% andBs to
oscillators and the first term of the frequency of the lastiuctuate around an average wh'Ch contribute to Iovyer the
oscillator,B; andAy, respectively, we have plotted the time average frequency6g) from being equal tow, ask in-
series of these two partslaas shown in Figs. (3) and 7b). creases. This observation is valid for all oscillators in the
This figure shows a part of the temporal behavior8efat chain. It is shown from Fig. 8 that the contribution to the
Fig. 7(a) and By at Fig. Ab), which are carrying the same average frequency of each oscillator is due to both tedms
features in the Who'e range Of t|me It iS Shown from FigS.and B. This contribution reduces the value of the a.Verage
7(a) and 7b) that the two parts fluctuate around a givenfrequency. AsK increases we expect that the fluctuations in
average. The fluctuations towards lower values reach practftequencies become stronger and the reduction in the average
cally the same value after each revolution while the fluctuafrequency increases. In order to see this clearly, we plot in
tion towards a positive value do not reach the same strengthig. A& 6(n) versusé(n+1) for k=10. We find atk=kg

after each revolution of the oscillators. Therefore, each part=4.51 a similar behavior to that in Fig.(&. This figure

as shown in Figs. (@) and 1b) has an average value which is shows the return map of the frequency for oscillators 1, 4, 8,
negative as shown by the dotted lines. This finally reduced2, and 16. As we go to the middle of the chain, the fluctua-
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FIG. 7. Parts of the time series of the the different phase parts @3,iat k=k,=4.51, for several oscillators.

tions are reduced until they approximately vanish at 8 whileaddition, there is a quasiperiodic motion as shown in Fig. 9.
the others near to the ends and the two at the ends havkis noticed also that the center of oscillatiGaverage value
is shifted towards a lower value &sincreases.

k increases, the fluctuation of each frequency increases. In

higher fluctuations. Also, it is indicated from Figi® that as

In fact, system5) has characteristics of nonuniform os-

Downloaded 04 Nov 2005 to 193.175.8.13. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



1222 Chaos, Vol. 13, No. 4, 2003 El-Nashar et al.

N <A >=1.85 <B>=3 k=16 (b)

‘/)/\/\/\/\/W\MM/\M/\A/\M/\UNV\/\M/I R

N
1

T T T
4800 4850 4900 4950 5000

4800 4850 4900 4950 5000
time time
6 6
N k=16 (c) 1 k=16 @

4 4 <B,>=-1.58

TAAAAAAAAAAAAAAAAANAAAAAAANA ?

PR AL - " m
i e LR R A

41 k=16 ©

AWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWA)

w0U\IVVVVVVVVVVVVU\]\JVVVVVVVVVVVV
<_2_
<Bp=tvs A
-4 8
<A >=-0.64 — B
-6 T T T
4800 4850 4900 4950 5000

time

FIG. 8. Parts of the time series of the different phase parts as if7l5cat k=16, for several oscillators.

cillators which have fast and slow frequencies during eacliore, there is a saddle-node remnant or ghost which leads to
revolution. It seems that &t, the oscillators at the two ends this slow passag®. In order to examine such behavior we
oscillate faster and then slower than other oscillators whileénvestigate the time series of each oscillator’s frequency. Fig-
the oscillato¢s) in the middle have an approximately uni- ures 1@a)—10(c) show parts of this time series of oscillators
form oscillation. As the coupling strength increases, the osi, 4 and 8. It is seen that &t or larger, the instantaneous
cillators at the ends influence the others to move with quasivelocity of the first oscillator has a slow motion during each
periodic motion(since they drive other oscillators to have revolution which repeats itself with the same magnitude
fast and slow motion during each revolution in tim&s k  while it has a fast velocity with different magnitudes during
increases further, the oscillators have a harder change in imifferent revolutions. Other oscillators in the middle of the
stantaneous velocities during each revolution. At the samehain have the same feature but with less variation in mag-
time the center of oscillation moves closer to zero. We expeatitudes. Ask increases, the oscillators have a stronger slow-
that ask increases to be in the vicinity df;, the center of ing down during each revolution. At the vicinity &f., the
oscillation moves towards the vicinity of zero. The situationoscillators approximately stop moving for a while and then
is similar to that of a nonuniform oscillator with a slow pas- move fast in a sudden jump. The duration of the time of each
sage due to the vicinity of a saddle-node bifurcation. Therestop (off state increases very fast as we approdch Now
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6 1' é é "1 é é FIG. 10. Parts of the time series of the instantaneous velocities for several
oscillators at(a) k=ks=4.51, (b) k=16, and(c) k~34.08.
(do/dt)_

closer tok.=34.1[see Fig. 1(b)]. In order to examine the

behavior of the duration in time ofon—off) states versus

k.—k we plot Fig. 12. As shown from Fig. 12, for two values

we are closer to answer the third question, since the squarf w,, the scaling law takes the form~ (k.—k) ~ 2 There-

root scaling law for 6,) as a function of k.—k) is pointing  fore, in order to relate this scaling law to that (dﬁfi>~(kc

to a saddle-node transition. This we do in the next section. —k)*2, we may say that fotk—k./<1, there is a saddle-

node instability leading to the slow passage and a saddle-

IV. QUANTIZED PHASE SLIP NEAR THE FROZEN node remnant appears, since the oscillation is affected by the

STATE nonlinear term of phases for each oscillator. Such effect, for
As indicated in the previous section, near the vicinity of K= Kc does not affect the stability of the system. However,

k., there exists a kind of synchronized firing of motion. ThatOr & value ofk near the vicinity ofk. the stable fixed points

is to say, we find a simultaneous on—off stdsee Fig. do not exist but they feel a saddle-node ghost. For the

10(c)], where all oscillators are in the off state and thensSaddle-node bifurcation we can write the universal f&rm

simultaneously burst to the on state. Rgets closer td,,  Which is given by

the timer between two successive bursts becomes longer. At x= (k. — k) + x2. 9
k=Kk., 7 goes to infinity. In order to see such two states
(on-off) during the increase df value to be closer tk., we
plot Figs. 11a) and 11b). It is shown from Fig. 1(a) that o dx T

the evolution of the phase$or example of first oscillator ™ fo (ke—K) +x2 2(ko—k) 2
varies monotonically until we arrive to=33.07. For values )
of 34.0<k=<k., we find a clear presence of on—off statesFor the saddle-node bifurcation, we find tha#;)~ (k.
and the length in time of each state becomes longer as we goek)*2. The inset of Fig. 1(b) shows the jumps by of the

FIG. 9. Maps of6, to 8, for (a) k=10 and(b) k=16.

The time 7 takes the form

(10
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ol FIG. 13. The evolution of) with time neark,. The main part and the inset
g time show the phase differences between adjacent and nonadjacent oscillators to
represent that the phaseskaapproacheg, , phases are going to be locked.
301 (b j
k = 34.09998 . . . .
calettiet al?’ reported experimental evidence for an equiva-
0 . ; . . lent system. This is the first time, to our knowledge, when a
0 1000 2000 3000 4000 5000

collective phase slip is reported. It will be interesting to see
whether or not the effect of a forcing frequency in a system
FIG. 11. Evolution of phase for the first oscillator for different valuekof  with a large number of oscillators will have the same kind of
(@) shows the monotonic variation @fwith time untilk=33.7; (b) shows  gcaling. It is not clear without further evidence that there will
the phase §I|p in Fhe vicinity df. . The inset of(b) shows in the vicinity of be a transition to a superlong laminar period intermittency,
k. there exists a jump bg= for the values of phases. . L . . .

and it is not within the scope of this work to engage in this
calculation.

phases during each revolution. Qualitatively, we can relate Figure 13 shows the evolution of phases of several os-

: ) . Cillators near the vicinity ok, . It is shown from this figure
the behavior neak; to a behavior of the motion of an over- . :
S : . , hat the phase difference between the oscillators are kept
damped particle in a potential, which has a series of loc

. . . . . ixed at nonzero value. Also, it is shown that the phase dif-
minima. Above the bifurcation ki>k;), the particle is . . :
S ference between adjacent oscillators is smaller than between
trapped to one of this minima permanently. ketk., there . . .
) ! . . . nonadjacent. The inset of Fig. 13 shows the same features for
is no stable fixed point and the particle slidesr 2

o 6 nother value ok. Both, the main and the inset, of Fig. 13
periodically=> The phenomena was reported for the case o :
. . . . show that ak approacheg,, the phases are going to take a
two noninteracting externally driven oscillators. Later, Boc-

constant value(phase lock and the differences between
phases are going to be constant. We can relate this finding to
what is found in the Kuramoto order parametB) (see Fig.

3), where we found that the order parameter is not equal to
unity atk..

time

35

o o =134
3.0 * o= 0.50
V. CONCLUSION

%9 In conclusion, while studying the behavior of phase

coupled oscillators with nearest neighbors coupling in a fixed
end chain, we have seen that the system has a common av-
erage frequency synchronization at a value of the coupling
strength, we call itkg, which is not equal to the value of
wo=(1N) =N, w; . This common average frequency decays
under the influence of coupling to a zero valfi®zen statg
T T . at k.. During the intervalkez<k=<k,, the system remains
-56.0 -4.6 -4.0 -35 -3.0 -25 -20 . . . . . . . A .
10g(kK) quasiperiodic. This quasiperiodicity is shoyvn by t_he maxi-
° mum Lyapunov exponent, as well as the time series of fre-
FIG. 12. log-log plot of the duration time versusk,—k for two different ~ quencies of oscillators. Also, we found a universal scaling
values ofw,, . law in the time-averaged frequency as a function of the cou-

log(z)

204
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