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Synchronization in a chain of nearest neighbors coupled oscillators
with fixed ends
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We investigate a system of coupled phase oscillators with nearest neighbors coupling in a chain with
fixed ends. We find that the system synchronizes to a common value of the time-averaged frequency,
which depends on the initial phases of the oscillators at the ends of the chain. This time-averaged
frequency decays as the coupling strength increases. Near the transition to the frozen state, the
time-averaged frequency has a power law behavior as a function of the coupling strength, with
synchronized time-averaged frequency equal to zero. Associated with this power law, there is an
increase in phases of each oscillator with 2p jumps with a scaling law of the elapsed time between
jumps. During the interval between the full frequency synchronization and the transition to the
frozen state, the maximum Lyapunov exponent indicates quasiperiodicity. Time series analysis of
the oscillators frequency shows this quasiperiodicity, as the coupling strength increases. ©2003
American Institute of Physics.@DOI: 10.1063/1.1611851#
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Systems of interacting units represent problems in many
fields, such as physics, chemistry, biology, neurophysiol
ogy, and engineering. They have been used to model phe
nomena as diverse as Josephson junction arrays, multi
mode lasers, vortex dynamics in fluids, biological
information processes, and neurodynamics.1–6 One of the
interesting phenomena observed in these systems is tha
the interacting oscillators synchronize themselves to a
common frequency. Particularly, these systems show an
extremely complex clustering behavior as a function of
the coupling strength: partial synchronization or total
synchronization, phase synchronization as well as lag
synchronization, etc.7–14 Although the dynamical systems
describing the above mentioned phenomena are quite dif
ferent, there are general features that can be described
using a simple model of coupled phase equations.

I. INTRODUCTION

The vast literature in these field do not allow us to
fair, but we believe most of the well known examples can
covered by referring to Refs. 15–20, as well as to the pre
ous references.

In spite of the extensive exploration of the dynamic
behavior of coupled chaotic systems that show synchron
tion phenomena, many interesting features remai
unknown.21,22 Recently, Zhenget al.23 studied the complex
synchronization tree of a system of oscillators with near
neighbors interactions, modeled by

u̇ i5v i1
k

3
@sin~u i 112u i !1sin~u i 212u i !#, ~1!
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with natural frequenciesv i selected randomly from a norma
Gaussian distribution,k is the coupling strength,i
51,2,. . . ,N, u i is the instantaneous phase andu̇ i the instan-
taneous frequency. Such oscillators with nearest neighb
interaction appear in Josephson junctions, laser arrays
phase-locked loops.22 These nonidentical oscillators cluste
in time averaged frequency, until they completely synch
nize to a common value of average frequency. Using perio
boundary conditionsu i 1N5u i , and scaling the frequencie
such that

1

N (
i 51

N

v i50 ~2!

the above system~1! of N oscillators, has a critical coupling
strengthk5kc , where fork.kc , a complete frequency syn
chronization can be observed whereu̇ i50. In addition each
u i is locked to a fixed value. Fork,kc , no phase locking
can occur andu̇ i(t) is nonzero and time dependent. Fr
quency synchronization between the individual oscillat
can be observed in the time average sense^u i&5^u j&, i
Þ j , where

^u i&5 lim
T→`

1

T E
0

T

u̇ i~ t !dt. ~3!

In this case, whenk,kc , the system has clusters of oscilla
tors of the same average frequencies. Reducing further
coupling strengthk, the number of units of the same avera
frequencies decreases until finally all oscillators become w
their natural frequencies through a complex structure. A
it has been found near the critical couplingkc ~near the tran-
6 © 2003 American Institute of Physics
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1217Chaos, Vol. 13, No. 4, 2003 NNC oscillators with fixed ends
sition to a common average frequency! simultaneous quan
tum slip features of the phases of the oscillators. The c
straint~2! in the case of system~1! limits the synchronization
to a zero frequency while maintaining the periodic bound
conditions. When this constraint is not used, the general
tures of the system will not be changed and the synchr
zation occurs via the same transition tree to a common
quency value

v056
1

N (
i 51

N

v i . ~4!

If we lift the periodic boundary conditionu i 1N5u i and
at the same time two neighbor oscillators are connecte
fixed ends, the ring of the oscillators becomes a chain w
fixed ends. As shown in Fig. 1, first and last oscillators c
be simply imagined as if they were joined to walls. No
system ~1! has the property:u i 215C1 , where i 51 and
uN115CN . For simplicity ~1! can be written as set of thre
groups of equations

u̇15v11
k

3
@sin~u22u1!#1

k

3
@sin~C12u1!#,

u̇ i5v i1
k

3
@sin~u i 112u i !#1

k

3
@sin~u i 212u i !#, ~5!

u̇N5vN1
k

3
@sin~CN2uN!#1

k

3
@sin~uN212uN!#.

We will see that this system possesses quite different feat
and characteristics than those of a ring. We expect that, u
the influence of coupling it will synchronize in frequenc
through a tree with the general features of that of Eq.~1!, and
there will be a critical value of the coupling strength at whi
the system possesses a common average frequency. We
see that, in spite of not being intuitive, constraint~2! will
make us miss some information about system~5!, that is,
when v0Þ0, the oscillators will synchronize to a commo
average frequency not equal tov0 . Also, as the coupling
strength increases, this average-frequency will start to de
to the frozen state, where all frequenciesu̇ i50, and this de-
cay will show unexpected properties. We will study how
this occurs. In particular, we will show that the average f
quency synchronization occurs at a value^u̇ i&Þv0Þ0, i.e.,
there is a critical value of the coupling strength, we call itks ,
where frequency synchronization between all oscillators
curs while the phases of the oscillators are not locked. Atks ,
the value of̂ u̇ i& depends on the phases of the oscillators
the ends. We will also show that the value ofkc , where the

FIG. 1. Chain of oscillators with fixed ends.
Downloaded 04 Nov 2005 to 193.175.8.13. Redistribution subject to AIP lic
n-

y
a-
i-

e-

to
h
n

es
er

will

ay

l
-

-

t

system freezes andu̇ i50, depends on the constraint param
eter ~4! and how muchv0 differs from zero. It should be
noted that whenv050 is used, thenks5kc also for the chain
with fixed ends. Finally we will show that atks , although the
system has a common average frequency, it does not s
phase slip features. However, these phase slip features
pear near the critical valuekc when the system goes to th
frozen state. Nearkc each phaseu i(t) of the oscillators will
have an intermittent sequence of 2p jumps. In this region
near kc we can also define a power law behavior for t
dependence oft, which is the time of duration of each phas
slip, and ^u̇ i&, on @kc2k#. We aim at understanding th
physical origin of such intermittency near the transition a
how this power law behavior is related to the phase jump

This paper is organized as follows: in Sec. II, we sho
the features of the frequency synchronization of system~5!.
In Sec. III, the temporal behavior of frequencies of t
coupled oscillators is investigated. Section IV is devoted
explore the phase slip near the frozen state. In Sec.
conclusion is given.

II. FEATURES OF FREQUENCY SYNCHRONIZATION

In this section we study the behavior of a chain of osc
lators with fixed ends. In Fig. 2, we show the time averag
frequency as a function of the coupling strengthk for a sys-
tem of 16 oscillators. The main part of Fig. 2~a! shows the
synchronization tree, which has a complex structure. We
tice clustering in frequency occurs, with the size of the clu
ters increasing, until atk5ks , the oscillators form a coheren
state in time-averaged frequency, with an average freque
different fromv0 . It is observed that the formation of clus
ters of the same average frequency occurs due to the ne
neighbors interactions, where elements which are close
space and closer in initial frequencies cluster first@number of
oscillators are indicated in Fig. 2~a!#.24,25 We see from Fig.
2~a! that, increasing the coupling strength, the value of
average frequency decays. The rate of decay becomes s
ger ask increases until the average frequency reaches ze
kc . Fork>kc the system is frozen withu̇ i50. We observe in
Fig. 2~b! the same feature as Fig. 2~a! but for smaller cou-
pling strength. It is interesting to understand why the sy
chronization frequency atks occurs at a lower value thanv0

and why the value of the average frequency decays when
coupling strength increases. A clear answer for such qu
tions will be left to the next section since the explorati
needs some investigation of the temporal behavior of sys
~5! for k>ks . In the inset of Fig. 2~b! we show the behavior
of v0 versuskc for different distributions of initial frequen-
cies. Notice that forv050, kc has its minimum value and i
coincides withks . The synchronization tree is independe
of the initial conditions for the phases for all values ofk,
except in the vicinity ofkc , the value of the coupling
strength for whichu̇50. In Fig. 2~a! ~main frame and inset!
another feature is shown, which is the dependence of
value of kc on the initial distributions of the phasesDu i j

5uu i2u j u in the interval @0,2p#. Notice that for different
initial distributions of the phases, the rate of the decay

^u̇ i& varies changing the value of the critical couplingkc . In
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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1218 Chaos, Vol. 13, No. 4, 2003 El-Nashar et al.
FIG. 2. Synchronization tree of time-averaged oscillators frequencies ve
the coupling strengthk. ~a! for vo51.34 ~number of oscillators are indi-
cated!; ~b! for vo50.34. The inset of~a! shows another tree forvo50 and
the dependence ofkc at initial phases as well as in~a!. The inset of~b!
shows the change of the constraintv0 versuskc .
Downloaded 04 Nov 2005 to 193.175.8.13. Redistribution subject to AIP lic
the inset of Fig. 2~b! we show the same dependency ofkc on
initial phases for another set of the distribution ofDv i j

5uv i2v j u. Figure 2~b! has been obtained with the same s
of initial conditions for the distribution of phasesDu i j 5uu i

2u j u in the interval@0,2p#, and for unevenly spaced initia
frequenciesDv i j , i.e, different values of the constraint pa
rameterv0 . In order to understand whykc depends on the
initial conditions of phases, we plot Fig. 3. This figure sho
the dependence ofkc on the initial phases of the two osci
lators at the ends of the chain forvo50. In fact we choose
only the first and the last oscillators since according to E
~5! the frequencies of these two oscillators have a stron
dependence on the phases of the oscillators at the ends
any other oscillators in the chain, which have frequenc
depending on the phase differences of neighboring osc
tors. On the other hand the initial phases of the two osci
tors at the ends represent two constants in the interval@0,2p#,
which can be replaced by any two arbitrary constants in
same interval, as will be clear in the next section.

As we have seen from Fig. 2 by inspection of the sy
chronization tree, there appears to be a universal behavio
the time-averaged frequency of the oscillators in the vicin
of kc . We have studied this region carefully for many valu
of the constraint parameterv0 , for different distributions of
initial frequenciesDv i j , and for different initial conditions
for the phasesDu i j . The results are plotted in Fig. 4 where
perfect scaling can be observed and the time-averaged
quency scales with the coupling strength as^u̇ i&;ukc

2ku0.5. The exponent has been calculated within an er
60.02. This kind of exponent gives an indication of th
occurrence of a saddle node instability. This transition m
indicate that in the vicinity ofkc there is a quasiperiodic
motion and the system goes to a periodic motion and e
oscillator locks in phase atkc .21,23,26To figure out such char-
acteristics, we will calculate the maximum Lyapunov exp
nent ~at the end of this section! to see how it behaves with

us
t-

FIG. 3. Dependence ofkc on the initial values of phases
of the first and theNth oscillators, which are represen
ing two arbitrary constant values in the interval@0,2p#.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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1219Chaos, Vol. 13, No. 4, 2003 NNC oscillators with fixed ends
increasingk. In addition, in the next section we shall stud
some features of the frequenciesu̇ i as a function of time,
which serve to clarify the scenario.

In order to look at the qualitative picture of the phases
oscillators under the influence of coupling, we have plot
the average of Kuramoto order parameter^R&,28 Fig. 5,
where

R5
1

NU(
j 51

N

eiu jU. ~6!

For v050, ^R& quickly increases exponentially afterkc , and
there is no complete synchronization in phase since^R&Þ1
which means that all the oscillators do not have the sa
phase. However, the exponential growth afterkc indicates
that the oscillators may lock in phase difference. Forv0

Þ0 it seems that̂ R& always increases exponentially aft
kc . Figure 5 also shows that whenv0Þ0, there is an indi-
cation of a loss of coherence of the phase locked state
ks . This is clearly observed when the shift ofv0 from zero
becomes large. This may indicate that system~5! tries to go
to a phase lock state and frequency synchronization atks but

FIG. 4. log-log plot of the average frequencies of oscillators versusukc

2ku.

FIG. 5. Order parameter̂R& versus the coupling strengthk for different
values of the constraintv0 .
Downloaded 04 Nov 2005 to 193.175.8.13. Redistribution subject to AIP lic
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it fails as the coupling strength increases. It also indica
that oscillators may have a quasiperiodic motion until t
coupling strength arrives to the value ofkc . In order to see
the behavior of the chaotic, quasiperiodic and periodic m
tions of the system, we have plotted in Fig. 6 the maxim
Lyapunov exponent versus the coupling strength. We obse
that the system is chaotic during the transition tree and, w
clusters of oscillators of common average frequency
formed and it goes to quasiperiodic motion nearks . The
reason why system~5! is chaotic in the interval (0,k<ks)
was thoroughly explained in Refs. 21, 23. We do not exp
the maximum Lyapunov exponent to be negative and
system to be periodic afterks ~see also the observation from
Fig. 5!. The only case when the maximum Lyapunov exp
nent is negative atks , is whenv050. This is clearly ob-
served from the inset of Fig. 6. As shown from Fig. 6~main
frame!, the fluctuation of the maximum Lyapunov expone
around zero nearks is small, which may mean that the sy
tem tries to undergo a quasiperiodic to periodic transition
ks . However, it fails and the fluctuation in the maximu
Lyapunov exponent increases ask increases until the vicinity
of kc . It is therefore interesting to investigate the dynam
of the motion of the oscillators of system~5!. The study of
the spatiotemporal behavior will help us to interpret wh
happens in the intervalks<k<kc . Particularly, it gives a
deep insight towards the understanding of how the oscilla
follow the two oscillators at the ends of the chain and h
the frequency decays to the frozen state following a pow
law behavior near the vicinity ofkc .

III. TEMPORAL BEHAVIOR OF FREQUENCIES OF
THE OSCILLATORS

In this section we do further quantitative analysis a
study the temporal behavior of the frequencies of the os
lators at several values ofk>ks . This study has been done i
order to understand some of the observed features in
synchronization tree fork>ks . Particularly, we try to find
answers to the following questions: ‘‘Why do all oscillators

FIG. 6. Maximum Lyapunov exponent forvo51.34. The inset shows the
maximum Lyapunov exponent forvo50.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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1220 Chaos, Vol. 13, No. 4, 2003 El-Nashar et al.
at ks have a common average frequency^u̇ i&Þv0? Why does
this average frequency decay as the coupling strength
creases? And, why, near the critical coupling kc , does there

exist a power law behavior for the value of^u̇ i& as a function
of k, when k approaches kc and the system goes to the froz
state?’’

According to Eq.~5! at ks all oscillators have a commo
average frequency value, which is given by

^u̇ i&5^u̇&5
1

N F(
i 51

N

v i1
k

3
^sin~C12u1!&

1^sin~CN2uN!&G . ~7!

To facilitate the discussion let us define

Ai5
k

3
^sin~u i 112u i !&,

Bi5
k

3
^sin~u i 212u i !&, ~8!

such that for each oscillatoru̇ i is given by the addition of the
three quantitiesv i , Ai andBi . Ai andBi have the following
properties: Ai52Bi 11 for i 51,2,. . . ,N22 and AN21

52BN . Therefore, atks all terms cancel each other exce
B1 and AN . It is clear from the above equation thatu̇ i(t)
depends on the phases of the two oscillators,u1(t) and
uN(t), at the ends of the chain, since takingC15CN50 does
not change the behavior of the synchronization tree. The
ues ofC1 and CN can be the initial phases of the first an
Nth oscillators or can take any values in the interval@0,2p#.
Now, what appears to be a dependence ofkc on the initial
phases is due to the values of phases next to the fixed e

Now, let us try to find an answer to the first questio
The behavior of the two terms in Eq.~7! which depend on
the phases of the first and last oscillators should be nega
on the time-averaged in order to reduce the value ofv0 to
the value of̂ u̇ i& atks ~see Fig. 2!. This behavior is due to the
fact thatu1(t) anduN(t) fluctuate to lower and higher value
around a given average, independent of the values ofC1 and
CN . The fluctuations of phases may be towards the low
value more than the higher such that finally the average
ues that contribute tôu̇ i& are negatives. In order to see th
clearly, we look at the two parts of Eq.~7! which are coming
originally from the second term of the frequency of the fi
oscillators and the first term of the frequency of the l
oscillator,B1 andAN , respectively, we have plotted the tim
series of these two parts atks as shown in Figs. 7~a! and 7~b!.
This figure shows a part of the temporal behaviors ofB1 at
Fig. 7~a! and B16 at Fig. 7~b!, which are carrying the sam
features in the whole range of time. It is shown from Fig
7~a! and 7~b! that the two parts fluctuate around a giv
average. The fluctuations towards lower values reach pra
cally the same value after each revolution while the fluct
tion towards a positive value do not reach the same stre
after each revolution of the oscillators. Therefore, each p
as shown in Figs. 7~a! and 7~b! has an average value which
negative as shown by the dotted lines. This finally redu
Downloaded 04 Nov 2005 to 193.175.8.13. Redistribution subject to AIP lic
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the average value of each part to a final negative va

which in turn reduces the value ofv0 to the value of̂ u̇ i& as
observed from Fig. 2. We have checked this behavior w
several values ofC1 andCN , and we found the same beha
ior. The only change occurs to the value ofkc as indicated in
the previous section. It is clearly seen from Eq.~7! that due
to different values ofC1 andCN , we find different values of
kc ~see Fig. 3! for the sameDv i j .

Now we arrive to answer the second question, i.e; we

to understand why the average frequencyu̇ i decays to zero.
Figures 7~a!–7~h! show the part of the time series of the tw
contributions to the phases of oscillators 1, 8, 13 and 16.
have chosen these oscillators in order to find a reason for
decay in the average frequency that may pass through
oscillators due to the nearest neighbor interactions. This
be done examining the behavior of each part for the fi
oscillator, one of the middle oscillators near to the first, o
of the middle oscillators which is far from both first andNth
oscillators, one of the oscillators which is closer to theNth
oscillator and finally theNth oscillator. As shown from Fig.
7, it is clear that both oscillators at the ends of the chain h
the higher fluctuations in frequency among all oscillato
Due to the nearest neighbor interactions these fluctuat
are transferred~by diffusion! to other oscillators, which
weaken as we go towards the center of the chain, and
approximately vanish in the center of the chain~e.g., 8!.
Therefore, the situation atks could be as follows: oscillators
at the middle synchronize and would prefer to go from
state of quasiperiodic to a state of periodic motion wh
oscillators at the two ends of the chain cannot match
motion. As k increases the oscillators at the ends, wh
possess large fluctuations in their frequency, drive other
cillators to follow them. As the coupling strength increas
we expect that the fluctuations in the frequencies of the
end oscillators increase and their effect will extend to
middle oscillators through the local interactions. This in tu
drives the other oscillators frequencies to fluctuate stron
around the average. Figures 8~a!–8~e! show theA and B
parts of oscillators 1, 3 and 8~since 13 and 16 have simila
features on the average as 3 and 1, respectively!. As shown
from this figure the fluctuations in the frequency of the fi
oscillator increases and its larger contribution comes fr
B1 , which lowers the value of the average frequency. Due
the diffusive interaction between the oscillators, the fluctu
tions travel along the chain until finally drivesA8 andB8 to
fluctuate around an average which contribute to lower

average frequencŷu̇8& from being equal tovo as k in-
creases. This observation is valid for all oscillators in t
chain. It is shown from Fig. 8 that the contribution to th
average frequency of each oscillator is due to both termA
and B. This contribution reduces the value of the avera
frequency. Ask increases we expect that the fluctuations
frequencies become stronger and the reduction in the ave
frequency increases. In order to see this clearly, we plo

Fig. 9~a! u̇(n) versusu̇(n11) for k510. We find atk5ks

54.51 a similar behavior to that in Fig. 9~a!. This figure
shows the return map of the frequency for oscillators 1, 4
12, and 16. As we go to the middle of the chain, the fluctu
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 7. Parts of the time series of the the different phase parts as in~7!, at k5ks54.51, for several oscillators.
il
ha
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. 9.

s-
tions are reduced until they approximately vanish at 8 wh
the others near to the ends and the two at the ends
higher fluctuations. Also, it is indicated from Fig. 9~b! that as
k increases, the fluctuation of each frequency increases
Downloaded 04 Nov 2005 to 193.175.8.13. Redistribution subject to AIP lic
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addition, there is a quasiperiodic motion as shown in Fig
It is noticed also that the center of oscillation~average value!
is shifted towards a lower value ask increases.

In fact, system~5! has characteristics of nonuniform o
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 8. Parts of the time series of the different phase parts as in Eq.~7!, at k516, for several oscillators.
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cillators which have fast and slow frequencies during e
revolution. It seems that atks , the oscillators at the two end
oscillate faster and then slower than other oscillators w
the oscillator~s! in the middle have an approximately un
form oscillation. As the coupling strength increases, the
cillators at the ends influence the others to move with qu
periodic motion~since they drive other oscillators to hav
fast and slow motion during each revolution in time!. As k
increases further, the oscillators have a harder change in
stantaneous velocities during each revolution. At the sa
time the center of oscillation moves closer to zero. We exp
that ask increases to be in the vicinity ofkc , the center of
oscillation moves towards the vicinity of zero. The situati
is similar to that of a nonuniform oscillator with a slow pa
sage due to the vicinity of a saddle-node bifurcation. The
Downloaded 04 Nov 2005 to 193.175.8.13. Redistribution subject to AIP lic
h

e

-
i-

in-
e

ct

-

fore, there is a saddle-node remnant or ghost which lead
this slow passage.29 In order to examine such behavior w
investigate the time series of each oscillator’s frequency. F
ures 10~a!–10~c! show parts of this time series of oscillato
1, 4 and 8. It is seen that atks or larger, the instantaneou
velocity of the first oscillator has a slow motion during ea
revolution which repeats itself with the same magnitu
while it has a fast velocity with different magnitudes durin
different revolutions. Other oscillators in the middle of th
chain have the same feature but with less variation in m
nitudes. Ask increases, the oscillators have a stronger slo
ing down during each revolution. At the vicinity ofkc , the
oscillators approximately stop moving for a while and th
move fast in a sudden jump. The duration of the time of ea
stop ~off state! increases very fast as we approachkc . Now
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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1223Chaos, Vol. 13, No. 4, 2003 NNC oscillators with fixed ends
we are closer to answer the third question, since the sq
root scaling law for̂ u̇ i& as a function of (kc2k) is pointing
to a saddle-node transition. This we do in the next sectio

IV. QUANTIZED PHASE SLIP NEAR THE FROZEN
STATE

As indicated in the previous section, near the vicinity
kc , there exists a kind of synchronized firing of motion. Th
is to say, we find a simultaneous on–off state@see Fig.
10~c!#, where all oscillators are in the off state and th
simultaneously burst to the on state. Ask gets closer tokc ,
the timet between two successive bursts becomes longe
k5kc , t goes to infinity. In order to see such two stat
~on–off! during the increase ofk value to be closer tokc , we
plot Figs. 11~a! and 11~b!. It is shown from Fig. 11~a! that
the evolution of the phases~for example of first oscillator!
varies monotonically until we arrive tok533.07. For values
of 34.07<k<kc , we find a clear presence of on–off stat
and the length in time of each state becomes longer as w

FIG. 9. Maps ofu̇n to u̇n11 for ~a! k510 and~b! k516.
Downloaded 04 Nov 2005 to 193.175.8.13. Redistribution subject to AIP lic
re

.

f
t

At

go

closer tokc534.1 @see Fig. 11~b!#. In order to examine the
behavior of the duration in time of~on–off! states versus
kc2k we plot Fig. 12. As shown from Fig. 12, for two value
of v0 , the scaling law takes the formt;(kc2k)21/2. There-
fore, in order to relate this scaling law to that of^u̇ i&;(kc

2k)1/2, we may say that foruk2kcu!1, there is a saddle
node instability leading to the slow passage and a sad
node remnant appears, since the oscillation is affected by
nonlinear term of phases for each oscillator. Such effect,
k>kc does not affect the stability of the system. Howev
for a value ofk near the vicinity ofkc the stable fixed points
do not exist but they feel a saddle-node ghost. For
saddle-node bifurcation we can write the universal form30

which is given by

ẋ5~kc2k!1x2. ~9!

The timet takes the form

t;E
0

` dx

~kc2k!1x2 5
p

2~kc2k!1/2. ~10!

For the saddle-node bifurcation, we find that^u̇ i&;(kc

2k)1/2. The inset of Fig. 11~b! shows the jumps by 2p of the

FIG. 10. Parts of the time series of the instantaneous velocities for sev
oscillators at~a! k5ks54.51, ~b! k516, and~c! k;34.08.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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phases during each revolution. Qualitatively, we can re
the behavior nearkc to a behavior of the motion of an ove
damped particle in a potential, which has a series of lo
minima. Above the bifurcation (k.kc), the particle is
trapped to one of this minima permanently. Fork,kc , there
is no stable fixed point and the particle slides 2p
periodically.26 The phenomena was reported for the case
two noninteracting externally driven oscillators. Later, Bo

FIG. 11. Evolution of phase for the first oscillator for different values ofk.
~a! shows the monotonic variation ofu with time until k533.7; ~b! shows
the phase slip in the vicinity ofkc . The inset of~b! shows in the vicinity of
kc there exists a jump bysp for the values of phases.

FIG. 12. log-log plot of the duration timet versuskc2k for two different
values ofvo .
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f
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caletti et al.27 reported experimental evidence for an equiv
lent system. This is the first time, to our knowledge, when
collective phase slip is reported. It will be interesting to s
whether or not the effect of a forcing frequency in a syst
with a large number of oscillators will have the same kind
scaling. It is not clear without further evidence that there w
be a transition to a superlong laminar period intermitten
and it is not within the scope of this work to engage in th
calculation.

Figure 13 shows the evolution of phases of several
cillators near the vicinity ofkc . It is shown from this figure
that the phase difference between the oscillators are
fixed at nonzero value. Also, it is shown that the phase
ference between adjacent oscillators is smaller than betw
nonadjacent. The inset of Fig. 13 shows the same feature
another value ofk. Both, the main and the inset, of Fig. 1
show that ask approacheskc , the phases are going to take
constant value~phase lock! and the differences betwee
phases are going to be constant. We can relate this findin
what is found in the Kuramoto order parameter^R& ~see Fig.
3!, where we found that the order parameter is not equa
unity at kc .

V. CONCLUSION

In conclusion, while studying the behavior of pha
coupled oscillators with nearest neighbors coupling in a fix
end chain, we have seen that the system has a common
erage frequency synchronization at a value of the coup
strength, we call itks , which is not equal to the value o
v05(1/N) ( i 51

N v i . This common average frequency deca
under the influence of coupling to a zero value~frozen state!
at kc . During the intervalks<k<kc , the system remains
quasiperiodic. This quasiperiodicity is shown by the ma
mum Lyapunov exponent, as well as the time series of
quencies of oscillators. Also, we found a universal scal
law in the time-averaged frequency as a function of the c

FIG. 13. The evolution ofu with time nearkc . The main part and the inse
show the phase differences between adjacent and nonadjacent oscillat
represent that the phases ask approacheskc , phases are going to be locked
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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1225Chaos, Vol. 13, No. 4, 2003 NNC oscillators with fixed ends
pling strength at the transition to the frozen state. The ti
series of frequencies and phases of the oscillators relate
power law to a saddle-node bifurcation atkc . For k,kc , a
saddle-node remnent appears which leads to the presen
on–off states of the frequencies. This behavior show
quantized phase slip during the change between the
states. The time in between slips has a power law scaling
have shown that there is no total phase synchronization
finite values ofk,kc . In the vicinity of kc each phase is
locked to a certain value and the phase difference betw
two oscillators does not equal zero. We have also found
each phase of oscillators has a quantized jump by an am
of 2p near the vicinity ofkc . We relate qualitatively this
behavior to the behavior of the motion of an overdamp
particle in a potential with a series of local minima. How
ever, in order to be sure about such argument we nee
study the behavior of the oscillators in such a potential n
kc . In addition, we need to study the region nearkc very
carefully before making any quantitative arguments, which
outside the scope of this manuscript.
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