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How does a periodic rotating wave emerge from high-dimensional chaos
in a ring of coupled chaotic oscillators?
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A route to typical rotating waves from high-dimensional chaos is investigated in diffusively coupled chaotic
Rossler oscillators. By increasing the coupling from zero, a high-dimensional spatiotemporal chaos changes
into a coherent state, which is periodic in time and well ordered in space, through consecutive transitions. A
crossover transition from spatially random chaos to spatially ordered chaos with phase locking and orienta-
tional equality(for two directiong breaking is a crucial step for establishing the typical spatial order of the
rotating wave.
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The dynamics of networks of coupled oscillators is a fun-For a=0.45, b=2.0, andc=4.0, the single Rssler oscilla-
damental problem. In many applications, the oscillators ar¢or is chaotic. In most of the paper, we fix the system size to
identical, dissipative, and the coupling is symmetric. Sincen=6, and an extension to general system size will be briefly
Turing’s seminal work[1] on morphogenesis, rings of discussed later in this work. For small coupling<1, the
coupled oscillators have been used extensively in physiologimotion is high-dimensional chaos, and it is chaotic in time
cal and biochemical studi¢g,3], coupled laser systems, Jo- and disordered in spa¢see Fig. 13)]. However, for certain
sephson junction arrays, electrical circuits, coupled chemicahtermediate coupling, the motion becomes regular. For in-
oscillators, etc[4—6]. In early studies, interest focused on stance, a stable rotating wave solution exists in the range of
coupled periodic oscillatorg3]. During the recent decade, 0.057<&<0.090[8]. In Fig. 1(b), we fix ¢ =0.080, where
interest has turned to the study of coupled chaotic oscillatorsve can see a rotating wave solution, which has a typgal
Rich behavior of chaotic and regular patterns associated witbpatial symmetry{9], and it is periodic in time and well
various kinds of chaos synchronization has been revealedrdered in space. In this state, all oscillators take an identical
[7]. With weak coupling the ring of the oscillators shows periodic orbit, but they have equal phase shif6 between
high-dimensional spatiotemporal chaos. With certain intereach pair of nearest-neighbor oscillators withbeing the
mediate coupling we can, usually, observe some regular paperiod of the motion. In this paper we call this kind of phase
terns with both spatial and temporal orders. For instancedistribution the antiphase distributid].
rotating waves are typical patterns with these orders. It is To answer the problem of how the disordered and chaotic
important to understand how spatiotemporal chaos can bstate of Fig. 1a) can develop into the regular state of Fig.
changed to a rotating wave state by continually varying al(b) with both temporal and spatial orders, we first briefly
certain control parameter, in particular, how the spatial ordereport on the observations of numerical results by increasing
of the rotating wave is established in this variation processthe coupling strength from zero with a coarse step
To our knowledge, this problem has not been clearly an=0.001. We find there are several major steps in this varia-
swered, and this is the central focus of the present paper. Wbn. First, the spatially disordered chdd3p ] shown in Fig.
shall show that the spatial order of the antiphase distribution(a) transit to a chaotic state with average-antiphase distri-
of oscillators is established far before the rotating wave ap-
pears. An average-antiphase distribution can occur in a high 3
dimensional chaotic state via phase synchronization of
chaos. This synchronization is the root of the spatial order of
the periodic rotating wave. 0

We take the coupled Rsler oscillators as our model:

)'(i:—yi—zi+s(Xi+l+Xi71_2Xi),

yi=Xitayite(Yir1tYi-1—2Yi), -6
(o
zi=b+(x;—C)zi+e(z,1tz_1—27),

FIG. 1. The orbits of Eq9.l) in (x,y) space(a) £=0.005(the

Xitn=Xi,» Yitn=VYi» Zin=2%, i=12,...n. disordered chaos statéb) £ =0.080(the rotating wave The num-
bersi=1,2,...,6 in thefigures indicate the positions of theos-

E— cillator at an arbitrary instant. The notation same is also used in Fig.
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1063-651X/2001/648)/0372034)/$20.00 64 037203-1 ©2001 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW E 64 037203

021 (a1) (b1) 1)
<ou
o
__/\__-/\/\/\
0.0
021 (a2) (b2) (c2)
Foi
o
_/\_/\/\/\
0.0 1
021 (a3) (b3) (c3)
o
a \—/
_/\_\/\/
0.0
-3.14-1.57 1.57 -1.57 1.57 -1.57 1.57 3.14
0 0 0

FIG. 3. Probability distributions of angle differenc&s ;, A3,
and A, for differente. (al)—(a3 ¢=0.002.(b1)—(b3) £=0.012.
(c1)—(c3) £=0.020.

In Fig. 2e) we show the three largest Lyapunov expo-
‘ nents(LEs) for a global view of the transitions while varying
0'0(8,_00 e 0.2 0.04 0.06 0.08 the coupling, in which all the states mentioned above are
0 marked. In this figure the transitions betwe€p, Pg, P»,
_ _ _ _ Qi, and Pi are clearly identified by the characteristic
FIG. 2. (3 Orbit of C, with £=0.018.(b) Orbit of Ps with & changes of the LE’s. Actually, the transition fraBy, to Pg is
zg'gig' ((g)) ?hr:)elte?;rzés\ivllt_r;/aapz&(\)/s&Sgngr:?sltsgrfrﬁ Z"e't:) fo through the inverse period-doubling bifurcations, and that
o o from Q to Py is through an inverse Hopf bifurcation. The
0.090 with a coarse step as:=0.001. . : . .
bifurcations betweerPg, P,, and Q; are slightly compli-
cated. We will not go into the detail of these bifurcations
since they all link various regular states. The most interesting
transition in Fig. 2 is the one betweddy and C,. This
rlransition, occurring between two high-dimensional chaotic
states, is not identified in Fig.(@ by any discontinuity of
1T the first three largest Lyapunov exponents, in sharp contrast
(Ajyq))=lim ff [, 1(t)— @i(t)]dt=2m/n, with all other transitions previously mentioned. Now let us
0 study this transition in more detail.
We define the phase difference between any given sites by
i=12,...n. (2 comparing them with a reference site, which is arbitrarily
chosen as the first oneA;(t)=arctafy;(t)/x(t)]
Second, the chaotic average-antiphase state develops to—arctarfy;(t)/x;(t)]. A; 1(t) must fluctuate in botlCp andCy
periodic average-antiphase state shown in Fig),2n which ~ states due to their chaoticity. However, their statistical be-
the six oscillators perform periodic motions different from haviors should respond to the transition fr@p to C,. The
each other, which is then calld®}. Third, this periodic state time step for computation is 0.01, and the steps for our
with six distinctive attractors, can be replaced by anotheRossler oscillators to rotate 2 in the (x,y) plane, i.e., to
kind of periodic average-antiphase state by further increasinthake a cycle, is about 628. We compute the probability dis-
e shown in Fig. 2c), which satisfiesZ; symmetry[9]. The  tribution of A; ; by a sample of time steps as "16tarting
six oscillators occupy two kinds of attractohsandB, called  from having cutoff a 10 transient. Figure 3 shows the dis-
P,, and in the order from 1 to 6 they take trajectoriesAas tributions ofA; ;, i=2,3, and 4 for three different coupling
B, A(t+T/3), B(t+T/3), A(t+2T/3), and B(t+2T/3). intensities. With a very small couplindg(al)—(ad, &
Fourth, a quasiperiodic average-antiphase state, in which a#0.002 all n oscillators are nearly uncorrelated from each
oscillators share an identical attractor, call@d, appears other, and then the distributions are similar to that of an
[see Fig. 2d)] in the range of 0.034¢<0.057, after which individual oscillator, which is peaked at zero angle, and the
the periodic rotating wave of Fig.(), calledPg, emerges influence of the coupling is practically not felt. Increasing
from the Q; state. to a certain extent, the structure of the distribution undergoes

bution[ CA] shown in Fig. 2a). By “average-antiphase” we
mean that the phase angles of the oscillatrd tan¢;(t)
=y;(t)/x;(t)] have a well-ordered equal-phase separation i
long-time average

T—oo
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a characteristic change seen (inl)—(b3) (¢=0.012), and
the distributions ofA;; form some additional peaks away
from the zero angle and they are centered\pt~ *+ 27 (i
—1)/6. These localized distributions represent a primary step
for the phase ordering. However, (h) no orientational pri-
ority exists. In Figs. 81)—3(b3) the probabilities are distrib-
uted symmetrically in both positive and negative directions.
When ¢ is increased further, the balance between the two
side peaks break, anli, ; and A3 ; have a choice to locate
their distribution peaks on only one side, either the positive
or negative side, depending on the initial conditisee Figs.
3(c1)—3(c3), £e=0.020. Thus a spontaneous phase ordering,
associated to the orientational equality breaking occurs,
which is the key element for the spatial order of the rotating
wave The changing from Fig.(3) to 3(c) is a typical phase
synchronization between chaotic oscillat¢id]; a signifi-
cant new feature in our case is that this phase synchroniza-

tion of the chaotic element leads to a phase locking with an 1 4y
equal phase separation distribution in the long-time average, 4 \\é3
the so-called average-antiphase distribution. The crossover :

region can be narrower if we increase the number of coupled 2 0 T 8 ¢

oscillatorsn, in our simulation. It is very probable that a

(sharp transition may b,e ,Observed in the largaimit (sp- FIG. 4. Orbits of the system with=14. (a) £=0.015, chaos
called theimodynamlc Ilmit[ll]. However, fOF largen, d!f' with spatially disordered phase distributidb) £ =0.0187, chaotic
ferent antiphase states with variokigwherek is the period 5,4 average-antiphase state wth 2. (c) s =0.069, periodic rotat-
of the mode of antiphase state we will discuss latean  jng wave ofk=2. (d) & =0.340, periodic rotating wave df=1.
coexist, which makes a convincing judgement (sharp
transition difficult. This dlﬁlCUlty will be treated in a future A Significant point is that all the above observations can
work; here the word “transition” is loosely used to describe pe intuitively understood, based on the competition of two
this crossover. The rotating wave can be approached step-bjscts, chaos and coupling. For small coupling, chaos suc-
step as increases, and the temporal behavior changes frorgeeds in making the spatial distribution disordered, while the
chaos to periodicity improving the spatial order shown inmuytual coupling is in favor to drive the oscillators to certain
Fig. 3(c). spatial orders characterized by the minima of the coupling
The above transition route is independent of the specifiepotential.” Focusing on the chaotic motion in(y) space
coupling configurations. In this paper we applied the cou-and neglecting the amplitude fluctuation of the oscillators,
pIings for all the three COOTdinateS(,@,Z), which can be i.e., setting the motion asx;(t)=r cosg¢(t), V;(t)
written as a (111) configuration. We have checked systems: sin ¢,(t), we can describe the couplings of E¢b. in the
with a number of other Coupling forms such as (100), (010) (X,y) plane as a gradient force of a potential
(110), (011), and (101); in all these cases we observe the

typical rotating wave developed from spatiotemporal chaos, R "1

following the same transition route as in Figs. 2 and 3. More- H(¢)= 2 Erz{[sin( bi1)—sin( )]
over, the transition route is also independent of the number =t

of cells. We have confirmed its generality by computing Egs. +[cog ¢, 1)—cog )12

(1) for differentn, like n=5, 7, 14, 15, 50, 200, and 500, \

and find the similar results in all cases tested. Other interest- 5

ing observations ar@) chaos with average-antiphase and the =T i”_ 21 COS(AiH,i)i,

resulting rotating waves cannot appear for small systems

<5, and(ii) for large n the system can develope rotating 7

waves with larger wave numbeks>1, i.e., the phase shift ¢=(dr.b2, .- én) 3
between neighboring cells iska/n, k>1, rather than and the coupling intends to bring the phase distribution to the
27/n. In Fig. 4 we do the same as Figs. 1 and 2 by takingminima of this potential. It is easy to show that at the distri-
n=14. The results show a spatially disordered chaos in Figbutions with equal phase separations

4(a) for small couplinges =0.015, a chaotic state witk=2

ordered average-antiphase distribution in Fighb)4for Ao s A —A. —A= 2k kel2 < n
slightly larger couplinge =0.0187, and &=2 periodic ro- 2178827 - T EInT AT gy BT LS =Y
tating wave[the neighbor phase shift i$; ;.  j=4/n in Fig. (4)

4(c) for £=0.069; and anotheik=1 rotating wave with R
neighbor phase shitk;, ;;=2=/n by further increasing the the potential has extrema valuesH(¢)/d¢;=0, i
coupling toe =0.340. =1,2,...n. The necessary and sufficient condition for any
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of these extrema to be minima is abs0, i.e., |A|<m/4.  breaking in Figs. (b) and 3c), which are the most important
Thus, for an antiphase state=2ks/n to have a minimal €lements of the spatial order for the corresponding periodic
potential, the system size should be 4k. Now we are able rotating wave. A similar argument can be applied to the an-

to understand the main results of this paper in terms of théPhase states with larger wave numbier 1. It is empha-
chaos-coupling competition. Let us take the=1 wave sized that the antiphase states with differentan coexist

(Figs. 1-3 as our example. Fan<4, both chaos and cou- when the potential Eq4) has multiple minima. We will not

: . J0 into the detail of the matter of multistability. It is worth-
pling do not SPDF’O” th‘? ordered_antlphase state. Cor]S(%/Jvhile remarking that the in-phase state=0) occupies all
qguently, no periodic rotating wave is observable. Ror4,

. . . ibl mmetri rin metry can have. Since consid-
the coupling can support some ordered configurations of EcgoSS ble symmetries a ring geo y

: < : X rably large coupling is needed to balance all the oscillators
(4) with minimal potential, however, the chaos still wants 0into spatial order higher thafi,, the in-phase state can ap-
destroy any ordering, their competition leads to different rpear only for rather large, thnc;ugh this state has minimal
sults for different coupling intensities. _ potential for arbitrary system size>1.

Fpr very small couplmg ‘.(<8,0)'_Chaos dominates, pro- In summary, we have investigated a transition route from
ducing random-phase distributidffigs. 1@ and 3a)l; by  gpatigtemporal chaos to rotating waves. A phase synchroni-
increasinge, the coupling can overcome the chaos influence, qinn transition between chaotic oscillators is found to be
and drive the system to the vicinity of an antiphase state ofcja| This chaos synchronization leads to an orientational
E_q. (4) from time to time. T_h|s leads to the dlstr!buuons of ymmetry breaking and the associated average-antiphase or-
Fig. 3b), peaked at the positions of the phase shifts of one 0ganization, from which the spatial order of the rotating wave
th_e minimum states of E¢4). However, in Fig. 80) chaosis s formed. In studying this problem, ring-coupled SRter
still strong enough to push the system away from the orderegg;jjators are taken as our model. Rings of coupled oscilla-
state. So, the system switches from random spatial order s have long ago been advocated as useful models in many
the phase ordering, either clockwise or anticlockwise, andyysics chemistry, and biology contexts. We hope the results
generates the localized while symmetric probability distribu-, {he present paper can be found useful for both theoretical

tions of Fig. 3b). By further increasing:, the coupling starts gy and experimental investigation in exploring the origins
to dominate and the oscillators have to remain in a well of &f various ordering in disordered chaotic systems.

minimum of the coupling potential. Chaos can produce only

small fluctuations of the phase distribution around the an- This work was partially supported by the National Natural
tiphase state established, and can no longer destroy it; thiscience Foundation of China and the Nonlinear Science
leads to the stable phase ordering and orientational equalifyroject of China.
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