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How does a periodic rotating wave emerge from high-dimensional chaos
in a ring of coupled chaotic oscillators?
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A route to typical rotating waves from high-dimensional chaos is investigated in diffusively coupled chaotic
Rössler oscillators. By increasing the coupling from zero, a high-dimensional spatiotemporal chaos changes
into a coherent state, which is periodic in time and well ordered in space, through consecutive transitions. A
crossover transition from spatially random chaos to spatially ordered chaos with phase locking and orienta-
tional equality~for two directions! breaking is a crucial step for establishing the typical spatial order of the
rotating wave.
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The dynamics of networks of coupled oscillators is a fu
damental problem. In many applications, the oscillators
identical, dissipative, and the coupling is symmetric. Sin
Turing’s seminal work @1# on morphogenesis, rings o
coupled oscillators have been used extensively in physiol
cal and biochemical studies@2,3#, coupled laser systems, Jo
sephson junction arrays, electrical circuits, coupled chem
oscillators, etc.@4–6#. In early studies, interest focused o
coupled periodic oscillators@3#. During the recent decade
interest has turned to the study of coupled chaotic oscillat
Rich behavior of chaotic and regular patterns associated
various kinds of chaos synchronization has been reve
@7#. With weak coupling the ring of the oscillators show
high-dimensional spatiotemporal chaos. With certain in
mediate coupling we can, usually, observe some regular
terns with both spatial and temporal orders. For instan
rotating waves are typical patterns with these orders. I
important to understand how spatiotemporal chaos can
changed to a rotating wave state by continually varying
certain control parameter, in particular, how the spatial or
of the rotating wave is established in this variation proce
To our knowledge, this problem has not been clearly
swered, and this is the central focus of the present paper
shall show that the spatial order of the antiphase distribu
of oscillators is established far before the rotating wave
pears. An average-antiphase distribution can occur in a h
dimensional chaotic state via phase synchronization
chaos. This synchronization is the root of the spatial orde
the periodic rotating wave.

We take the coupled Ro¨ssler oscillators as our model:

ẋi52yi2zi1«~xi 111xi 2122xi !,

ẏi5xi1ayi1«~yi 111yi 2122yi !,
~1!

żi5b1~xi2c!zi1«~zi 111zi 2122zi !,

xi 1n5xi , yi 1n5yi , zi 1n5zi , i 51,2, . . . ,n.

*Email address: yzhang@ictp.trieste.it
1063-651X/2001/64~3!/037203~4!/$20.00 64 0372
-
e
e

i-

al

s.
th
ed

r-
t-

e,
is
be
a
r

s.
-
e

n
-

h-
f
f

For a50.45, b52.0, andc54.0, the single Ro¨ssler oscilla-
tor is chaotic. In most of the paper, we fix the system size
n56, and an extension to general system size will be brie
discussed later in this work. For small coupling,«!1, the
motion is high-dimensional chaos, and it is chaotic in tim
and disordered in space@see Fig. 1~a!#. However, for certain
intermediate coupling, the motion becomes regular. For
stance, a stable rotating wave solution exists in the rang
0.057,«,0.090 @8#. In Fig. 1~b!, we fix «50.080, where
we can see a rotating wave solution, which has a typicalZ6
spatial symmetry@9#, and it is periodic in time and wel
ordered in space. In this state, all oscillators take an ident
periodic orbit, but they have equal phase shiftT/6 between
each pair of nearest-neighbor oscillators withT being the
period of the motion. In this paper we call this kind of pha
distribution the antiphase distribution@6#.

To answer the problem of how the disordered and cha
state of Fig. 1~a! can develop into the regular state of Fi
1~b! with both temporal and spatial orders, we first brie
report on the observations of numerical results by increas
the coupling strength from zero with a coarse stepD«
50.001. We find there are several major steps in this va
tion. First, the spatially disordered chaos@CD# shown in Fig.
1~a! transit to a chaotic state with average-antiphase dis

FIG. 1. The orbits of Eqs.~1! in (x,y) space.~a! «50.005~the
disordered chaos state!. ~b! «50.080~the rotating wave!. The num-
bers i 51,2, . . . ,6 in thefigures indicate the positions of thei os-
cillator at an arbitrary instant. The notation same is also used in
2.
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BRIEF REPORTS PHYSICAL REVIEW E 64 037203
bution @CA# shown in Fig. 2~a!. By ‘‘average-antiphase’’ we
mean that the phase angles of the oscillatorsf i @ tanf i(t)
5yi(t)/xi(t)# have a well-ordered equal-phase separation
long-time average

^D i 11,i&5 lim
T→`

1

TE0

T

@f i 11~ t !2f i~ t !#dt52p/n,

i 51,2, . . . ,n. ~2!

Second, the chaotic average-antiphase state develops
periodic average-antiphase state shown in Fig. 2~b!, in which
the six oscillators perform periodic motions different fro
each other, which is then calledP6. Third, this periodic state
with six distinctive attractors, can be replaced by anot
kind of periodic average-antiphase state by further increa
« shown in Fig. 2~c!, which satisfiesZ3 symmetry@9#. The
six oscillators occupy two kinds of attractorsA andB, called
P2, and in the order from 1 to 6 they take trajectories asA,
B, A(t1T/3), B(t1T/3), A(t12T/3), and B(t12T/3).
Fourth, a quasiperiodic average-antiphase state, in whic
oscillators share an identical attractor, calledQ1, appears
@see Fig. 2~d!# in the range of 0.034,«,0.057, after which
the periodic rotating wave of Fig. 1~b!, calledPR , emerges
from theQ1 state.

FIG. 2. ~a! Orbit of CA with «50.018.~b! Orbit of P6 with «
50.024. ~c! Orbit of P2 with «50.030. ~d! Orbit of Q1 with «
50.045. ~e! Three largest Lyapunov exponents vs« from zero to
0.090 with a coarse step asD«50.001.
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In Fig. 2~e! we show the three largest Lyapunov exp
nents~LEs! for a global view of the transitions while varyin
the coupling, in which all the states mentioned above
marked. In this figure the transitions betweenCA , P6 , P2 ,
Q1, and PR are clearly identified by the characterist
changes of the LE’s. Actually, the transition fromCA to P6 is
through the inverse period-doubling bifurcations, and t
from Q1 to PR is through an inverse Hopf bifurcation. Th
bifurcations betweenP6 , P2, and Q1 are slightly compli-
cated. We will not go into the detail of these bifurcatio
since they all link various regular states. The most interes
transition in Fig. 2 is the one betweenCD and CA . This
transition, occurring between two high-dimensional chao
states, is not identified in Fig. 2~e! by any discontinuity of
the first three largest Lyapunov exponents, in sharp cont
with all other transitions previously mentioned. Now let
study this transition in more detail.

We define the phase difference between any given site
comparing them with a reference site, which is arbitrar
chosen as the first one D i ,1(t)5arctan@yi(t)/xi(t)#
2arctan@y1(t)/x1(t)#. D i ,1(t) must fluctuate in bothCD andCA
states due to their chaoticity. However, their statistical
haviors should respond to the transition fromCD to CA . The
time step for computation is 0.01, and the steps for
Rössler oscillators to rotate 2p in the (x,y) plane, i.e., to
make a cycle, is about 628. We compute the probability d
tribution of D i ,1 by a sample of time steps as 107 starting
from having cutoff a 106 transient. Figure 3 shows the dis
tributions ofD i ,1 , i 52,3, and 4 for three different couplin
intensities. With a very small coupling@~a1!–~a3!, «
50.002# all n oscillators are nearly uncorrelated from ea
other, and then the distributions are similar to that of
individual oscillator, which is peaked at zero angle, and
influence of the coupling is practically not felt. Increasing«
to a certain extent, the structure of the distribution underg

FIG. 3. Probability distributions of angle differencesD2,1, D3,1,
and D4,1 for different «. ~a1!–~a3! «50.002. ~b1!–~b3! «50.012.
~c1!–~c3! «50.020.
3-2
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a characteristic change seen in~b1!–~b3! («50.012), and
the distributions ofD i ,1 form some additional peaks awa
from the zero angle and they are centered atD i ,1'62p( i
21)/6. These localized distributions represent a primary s
for the phase ordering. However, in~b! no orientational pri-
ority exists. In Figs. 3~b1!–3~b3! the probabilities are distrib
uted symmetrically in both positive and negative directio
When « is increased further, the balance between the
side peaks break, andD2,1 andD3,1 have a choice to locate
their distribution peaks on only one side, either the posit
or negative side, depending on the initial condition@see Figs.
3~c1!–3~c3!, «50.020#. Thus a spontaneous phase orderin
associated to the orientational equality breaking occu
which is the key element for the spatial order of the rotat
wave. The changing from Fig. 3~a! to 3~c! is a typical phase
synchronization between chaotic oscillators@10#; a signifi-
cant new feature in our case is that this phase synchron
tion of the chaotic element leads to a phase locking with
equal phase separation distribution in the long-time avera
the so-called average-antiphase distribution. The cross
region can be narrower if we increase the number of coup
oscillatorsn, in our simulation. It is very probable that
~sharp! transition may be observed in the largen limit ~so-
called thermodynamic limit! @11#. However, for largen, dif-
ferent antiphase states with variousk ~wherek is the period
of the mode of antiphase state we will discuss later! can
coexist, which makes a convincing judgement of~sharp!
transition difficult. This difficulty will be treated in a future
work; here the word ‘‘transition’’ is loosely used to describ
this crossover. The rotating wave can be approached step
step as« increases, and the temporal behavior changes f
chaos to periodicity improving the spatial order shown
Fig. 3~c!.

The above transition route is independent of the spec
coupling configurations. In this paper we applied the co
plings for all the three coordinates (x,y,z), which can be
written as a (111) configuration. We have checked syste
with a number of other coupling forms such as (100), (01
(110), (011), and (101); in all these cases we observe
typical rotating wave developed from spatiotemporal cha
following the same transition route as in Figs. 2 and 3. Mo
over, the transition route is also independent of the num
of cells. We have confirmed its generality by computing E
~1! for different n, like n55, 7, 14, 15, 50, 200, and 500
and find the similar results in all cases tested. Other inter
ing observations are~i! chaos with average-antiphase and t
resulting rotating waves cannot appear for small systemn
,5, and ~ii ! for large n the system can develope rotatin
waves with larger wave numbersk.1, i.e., the phase shif
between neighboring cells is 2kp/n, k.1, rather than
2p/n. In Fig. 4 we do the same as Figs. 1 and 2 by tak
n514. The results show a spatially disordered chaos in
4~a! for small coupling«50.015, a chaotic state withk52
ordered average-antiphase distribution in Fig. 4~b! for
slightly larger coupling«50.0187, and ak52 periodic ro-
tating wave@the neighbor phase shift isD i 11,i54p/n in Fig.
4~c! for «50.069#; and anotherk51 rotating wave with
neighbor phase shiftD i 11,i52p/n by further increasing the
coupling to«50.340.
03720
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A significant point is that all the above observations c
be intuitively understood, based on the competition of t
facts, chaos and coupling. For small coupling, chaos s
ceeds in making the spatial distribution disordered, while
mutual coupling is in favor to drive the oscillators to certa
spatial orders characterized by the minima of the coupl
‘‘potential.’’ Focusing on the chaotic motion in (x,y) space
and neglecting the amplitude fluctuation of the oscillato
i.e., setting the motion asxi(t)5r cosfi(t), yi(t)
5r sinfi(t), we can describe the couplings of Eqs.~1! in the
(x,y) plane as a gradient force of a potential

H~fW !5(
i 51

n
1

2
r 2$@sin~f i 11!2sin~f i !#

2

1@cos~f i 11!2cos~f i !#
2%

5r 2Fn2(
i 51

n

cos~D i 11,i !G ,

fW 5~f1 ,f2 , . . . ,fn! ~3!

and the coupling intends to bring the phase distribution to
minima of this potential. It is easy to show that at the dist
butions with equal phase separations

D2,15D3,25 . . . 5D1,n5D5
2kp

n
, k51,2, . . .<

n

2
~4!

the potential has extrema values]H(fW )/]f i50, i
51,2, . . . ,n. The necessary and sufficient condition for a

FIG. 4. Orbits of the system withn514. ~a! «50.015, chaos
with spatially disordered phase distribution.~b! «50.0187, chaotic
and average-antiphase state withk52. ~c! «50.069, periodic rotat-
ing wave ofk52. ~d! «50.340, periodic rotating wave ofk51.
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of these extrema to be minima is cosD.0, i.e., uDu,p/4.
Thus, for an antiphase stateD52kp/n to have a minimal
potential, the system size should ben.4k. Now we are able
to understand the main results of this paper in terms of
chaos-coupling competition. Let us take thek51 wave
~Figs. 1–3! as our example. Forn,4, both chaos and cou
pling do not support the ordered antiphase state. Co
quently, no periodic rotating wave is observable. Forn.4,
the coupling can support some ordered configurations of
~4! with minimal potential, however, the chaos still wants
destroy any ordering, their competition leads to different
sults for different coupling intensities.

For very small coupling («,«0), chaos dominates, pro
ducing random-phase distribution@Figs. 1~a! and 3~a!#; by
increasing«, the coupling can overcome the chaos influen
and drive the system to the vicinity of an antiphase state
Eq. ~4! from time to time. This leads to the distributions
Fig. 3~b!, peaked at the positions of the phase shifts of one
the minimum states of Eq.~4!. However, in Fig. 3~b! chaos is
still strong enough to push the system away from the orde
state. So, the system switches from random spatial orde
the phase ordering, either clockwise or anticlockwise, a
generates the localized while symmetric probability distrib
tions of Fig. 3~b!. By further increasing«, the coupling starts
to dominate and the oscillators have to remain in a well o
minimum of the coupling potential. Chaos can produce o
small fluctuations of the phase distribution around the
tiphase state established, and can no longer destroy it;
leads to the stable phase ordering and orientational equ
-
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breaking in Figs. 1~b! and 3~c!, which are the most importan
elements of the spatial order for the corresponding perio
rotating wave. A similar argument can be applied to the
tiphase states with larger wave numberk.1. It is empha-
sized that the antiphase states with differentk can coexist
when the potential Eq.~4! has multiple minima. We will not
go into the detail of the matter of multistability. It is worth
while remarking that the in-phase state (k50) occupies all
possible symmetries a ring geometry can have. Since con
erably large coupling is needed to balance all the oscilla
into spatial order higher thanZn , the in-phase state can ap
pear only for rather large«, though this state has minima
potential for arbitrary system sizen.1.

In summary, we have investigated a transition route fr
spatiotemporal chaos to rotating waves. A phase synchr
zation transition between chaotic oscillators is found to
crucial. This chaos synchronization leads to an orientatio
symmetry breaking and the associated average-antiphas
ganization, from which the spatial order of the rotating wa
is formed. In studying this problem, ring-coupled Ro¨ssler
oscillators are taken as our model. Rings of coupled osc
tors have long ago been advocated as useful models in m
physics, chemistry, and biology contexts. We hope the res
in the present paper can be found useful for both theoret
study and experimental investigation in exploring the orig
of various ordering in disordered chaotic systems.
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