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Dynamic scaling in a ballistic deposition model for a binary system
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A ballistic deposition model for the kinetics of surface growth for two species is introduced as a description
of the evolution of a surface under vapor deposition. We used a tunable parameterP to control the deposition
of the particles such that one type is deposited with probabilityP while the other is deposited with 12P.
Simulations in 211 dimensions using local surface diffusion lead to the formation of a rough surface whose
dynamical evolution is not that of the Kardar-Parisi-Zhang universality class. Also, when surface diffusion
becomes dominant, the model moves away from the Edwards-Wilkinson universality.

PACS number~s!: 05.40.2a, 05.70.Ln, 68.10.Jy, 68.35.Ct
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The growth of surfaces by vapor deposition and
mechanisms have been extensively studied in the past@1,2#
motivated by technological applications. Most previous st
ies have dealt with the growth of deposited components
only one kind. However, since growth of two or more sp
cies is common in modern technology, the study of such
problems has great interest which extends to its relevanc
understanding nonequilibrium statistical mechanics, si
the growth process may belong to a new universality cl
@3–5#.

It is well known that a stochastically growing surface e
hibits scaling behavior and evolves to a steady state with
a characteristic time or length scale. Therefore, starting w
an initially flat substrate and defining the surface wid
W(L,t) by

W2~L,t !5
1

Ld21 (
r

@h~r ,t !2h~ t !#2, ~1!

whereL is the system sizeh(r ,t) is the height of the surface
at positionr and timet, h(t) is the average height at timet,
and d21 is the substrate dimension, the scaling law@1# is
given by

W~L,t !5La f ~ t/La/b!. ~2!

The roughness exponenta and the growth exponentb char-
acterize the dynamical scaling behavior. The functionf (x)
scales asf (x)5xb for x!1 and f (x)5const forx@1. This
scaling behavior has been studied in various systems
models and has been argued to be universal@1,2#. Many of
these models belong to the Kardar-Parisi-Zhang~KPZ! uni-
versality class@6#. However, there have been many efforts
discover different universality classes.

Even though models of surface growth for binary syste
have been presented in previous work@3–5,7#, little is
known about the kinetic roughening originating in the
models and our understanding of this kind of growth is s
in an early phase. Among the models used to represen
growth of composite systems, a well studied example is
PRE 611063-651X/2000/61~6!/6149~7!/$15.00
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ballistic deposition~BD! model. Here, particles rain dow
vertically onto a substrate and join the aggregate at the p
of contact, giving rise to a rather interesting structure: T
surface is a self-affine fractal although the bulk, which
filled with voids inside, is compact@1#. The BD model cap-
tures the essential features of processes such as vapor
sition. However, it does not provide an adequate represe
tion of diffusion on the surface. Such processes can be fo
in growth where the newly arriving particle diffuses to
local minimum along the surface of the deposited mater
Surface diffusion leads to surface relaxation, which tends
smooth out the surface@1#. Therefore, to simulate depositio
as realistically as possible, both diffusion and overhan
voids must be included@4,8#. Thus, in the growing system
there may exist different kinds of interactions for the tw
species in addition to the overhangs and diffusion, which
turn yield a different kinetics of growth associated with
change in the morphological structure of the aggregate.
ligrini and Jullien@7# described surface growth according
a model with two kinds of particles, sticky and sliding. The
used a parameterc to control the process of diffusion on th
surface. Whenc50 their model is similar to that of Family
@9#, i.e., a model with surface reconstruction that belongs
the Edwards and Wilkinson~EW! universality class@10#,
while, whenc51, it is equivalent to the plain ballistic mode
that fits in the KPZ universality class. However, they do n
present a kinetic study and how the surface evolves w
time to a steady state. In a previous report@4# we have used
a BD model for two kinds of particles~active and inactive!
including diffusion on the surface where we allowed the f
lowing interactions: the active particle falling over a give
column ~or site! always sticks over an active particle, or
sticks over an inactive particle when there is an active p
ticle among the nearest neighbors of the chosen column
layer higher than the inactive one. Diffusion to a local min
mum around the neighborhood of the chosen site is in
duced when an inactive particle deposits over an active
or deposits over an inactive particle with an active parti
among the nearest neighbors one step higher. We foun
morphological structural transition as the probability of b
6149 ©2000 The American Physical Society
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6150 PRE 61HASSAN F. EL-NASHAR AND HILDA A. CERDEIRA
ing an inactive particle increases. Although we introduc
surface diffusion in the BD model, the values of the e
tracted exponents do not give an indication that the univ
sality is changed from KPZ to EW type. Such a transition
attributed to the presence of three different processes du
growth; overhanging, nonlocality, and surface diffusion. T
competition between these three processes finally leads
different kinetics.

In this paper, we focus our studies on kinetic rougheni
scaling, and morphologies in a model for binary system
Such a study may help to understand to which universa
class the model belongs. We concentrate on the situat
where surface diffusion is introduced for both types of s
cies. We use a BD growth model which includes surfa
relaxation for both components. We introduce interactio
between the two species since one kind is necessary fo
deposition to occur, while the presence of the other k
allows diffusion to take place. This in turn may lead to
elimination of the nonlocal growth and formation of mo
voids under the surface@4#. Here, we present results of nu
merical simulations for the growth kinetcs and morpholo
in 211 dimensions. We use the probabilityP as a continu-
ously tunable parameter to control the system, where
deposition of two species occurs as (12P) for one type of
component andP for the other type.

The model in this work is based on the BD model, whi
is composed of two kinds of particlesA andC, with nearest
neighbor interactions between particles. The deposition
curs on a substrate of sizeL2 with probabilities 12P andP
for particlesA and C, respectively. Surface diffusion is in
troduced for both types of particles since it plays an imp
tant role from the point of view of applications to real grow
processes. We do not allow reconstruction processes in
bulk since the rate of this kind of process is much lower th
the rate of processes on the surface. Also, we do not inc
evaporation processes in the model since deposition oc
more frequently than evaporation. The model we propos
appropriate to describe reactions that take place on the g
ing surface of materials. It represents the surface growth
material with a low concentration of impurities. These imp
rities are represented by particlesC, which have fewer active
bonds than particlesA. Further, it describes the deposition
two kinds of particles~one heavy and one light! with differ-
ent attractive forces.

The growth process, which consists of particles falli
randomly straight down one at a time onto a growing s
face, is as follows: at first a column is selected at random
then a particleA ~or particleC! is deposited on the surface o
the aggregate with a probability 12P ~or P!. Diffusion re-
sults when a particle deposits over one of a different ty
that is, particleA deposits over particleC or particleC de-
posits over typeA. In general, the presence of particleA is
important for deposition to happen while typeC is allowing
diffusion to appear. A cross section of the aggregate
shown in Figs. 1~a! and 1~b!. The white squares represent th
aggregated particle of typeA and dark squares represe
those of typeC. Circles, which account for both typesA
~empty! andC ~full !, denote the incoming particles. The pa
of the fallen particle is shown by the arrows. The deposit
of particles of typeA occurs according to the following pro
cesses depicted in Fig. 1~a!: particleA will stick to the first
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particleA that meets, either at the top of the chosen colu
~particles 4 and 5! or sideways~particles 2 and 6!; on the
other hand, if no particleA is found the incoming particle
sticks to the top of the chosen column and then diffu
~particles 1 and 3! or remains on it if the neighbors are a
equal or higher height~particle 7!. When the incoming par-
ticle is of typeC @process shown in Fig. 1~b!#, it does not
stick to the top of the chosen column if the latter is high
than the neighboring columns: it diffuses if it meets a p
ticle A ~particle 5! or is discarded if it finds a particleC and
there are no particlesA along the neighboring column
higher by one step~particle 1!; on the other hand, if the
chosen column is lower than its neighbors and the high
neighbor contains a particleA, the particle will diffuse if
there is at least one neighboring column lower than the c
sen one~particle 6! or it will diffuse downward~particle 2!;
when all the surrounding columns are higher than the cho
one, the incoming particle will stick on top of the chosen s
if it finds a particleA either at the top~particle 4! or sideways
~particles 3!, otherwise the particle will be discarded~particle
1!. In Fig. 1, particle 7 represents the border of the surfa
and we should interpret the last column depicted as a ne
bor to the first one due to the boundary conditions. Not
that a process of type I in Fig. 1~a!, where a particleA has
deposited on top of aC, can happen because in 211 dimen-
sions there are four neighbors and the particle adheres
side of any of those neighbors, or because of diffusion. A
a process of type II occurs due to lateral sedimentation at
one of the four neighbors higher than the chosen site
process of type III arises since particlesC always diffuse to
the local minimum on the surface and maybe this site
located at the edge of the area of local diffusion.

We performed simulations for this model on a square
tice with d53. The aggregation occurs in theZ direction
with periodic boundary conditions in theX andY directions.
The statistical average is obtained over 500 independ
simulations for each parameter.

FIG. 1. A cross sectional piece of the aggregate. White squ
stand for particlesA and dark squares symbolize particlesC. ~a! The
empty circles denote the deposited particles of typeA. The deposi-
tion is indicated by the arrows. The diffusion process is denoted
fallen particles 1 and 3.~b! The full circles represent particles o
type C. The deposition is indicated by arrows. The process of d
fusion is represented by fallen particles 2, 5, and 6.
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PRE 61 6151DYNAMIC SCALING IN A BALLISTIC DEPOSITION . . .
Figure 2 shows a log-log plot of the surface widthW as a
function of the time of growtht ~number of deposited layers!
for a probability P50.1 for different lattice sizes. We ob
serve surprising results: the surface width~roughness! W in-
creases as a function oft during three different stages. In th
first stage, where 1, log2 t,3, roughness enlarges asW(t)
;t0.53 and this stage may be considered as a transient@2#.
During the second stage the surface width grows asW(t)
;tb1 whereb150.37 for all system sizes. Later, the surfa
roughness extends asW(t);tb2(L), where 0.52<b2(L)
<2.25 for 3600<L2<40 000. The upper right inset of Fig.
shows clearly the two growth exponents for a system s
L2510 000. It is clear from the figure that as the time i
creases the surface width does not reach saturation. Sim
tions ~with less statistics due to computational limits! for
larger times than those presented in Fig. 2 show thatW does
not reach saturation. In an attempt to interpret the ab
results, we have investigated the morphology. Figures~a!
and 3~b! show a surface view taken at log2 t510.5 for two
values of system size,L2510 000 and 40 000, respectivel
The figure reveals that the surface has a rough struc
which becomes rougher as the system size increases.
values of both exponents suggest that there are two reg
of growth: one at intermediate times and one at long tim
Also, for the larger system size deep and large grooves
formed over the surface, resulting in large fluctuations
height. Thus, surface width grows having an expon
b2(L)@b1 . The reason for the sudden steep slopes over
surface, which increase with system size, can be explaine
follows. During growth, the deposition of typeA is more
frequent than that of typeC. Diffusion is allowed for typeC
more than for typeA since it is more probable thatA will find
another particleA to stick to it than aC type. In addition, if
A sticks toC it diffuses to a local minimum in the neighbo
hood of the chosen column. Therefore, over the areas

FIG. 2. Log-log plot of the surface width versus time forP
50.1 and for different system sizes. The upper left inset shows
density versus system size. The upper right inset shows the
tence of the two regime growth exponents whenL2510 000. The
lower inset showsb2(L) versus different system sizes.
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ered byC, diffusion is more frequent, while over the areas
A type, adhering is dominant. Also overhangs become m
common along the columns of the areas of typeA, since the
areas of typeA grow faster than those of typeC. These
effects lead to a surface with steep slopes where the gro
exponent is high. Figures 4~a! and 4~b! show a section of
area equal to 10 000 where the distribution of particles o
the surface for system sizes 10 000 and 40 000 is show
log2 t510.5. We notice from this figure that the areas of ty
C increase as size increases. So wide areas over the su
grow at a slower speed. Finally, deep grooves are form
which become wider as system size increases. Also,
overhangs along the columns that contain particles of typA
increase the growth rate along these columns. Figur
shows that the densityr for the long time limit~the top left
inset!, wherer5N/^h&L2, remains constant when the sy
tem size increases for the same value ofP, strengthening the
argument above that overhanging is common and has
same contribution for all system sizes. Figure 5 show
log-log plot of the surface roughness versus time for val
of the probability 0.1<P<0.3 when the system size equa
10 000. This figure reveals that the saturation of the surf
width in the long time limit can be defined forP>0.18 ~see
the left inset of Fig. 5!. We argue that this behavior is due
the balance, in the long time limit, between diffusion a
overhangs. That is, diffusion competes with overhangs/vo
and drives the surface width to saturate earlier~during the
first regime!. Within the second regime overhangs domina

e
is-

FIG. 3. Three dimensional plots of the surface with differe
system sizes for log2 t510.5; ~a! L2510 000 and~b! L2540 000.
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6152 PRE 61HASSAN F. EL-NASHAR AND HILDA A. CERDEIRA
and increase the growth rate. However, the two regime
growth are present forP,0.3 as indicated from the righ
inset of Fig. 5, while the left inset shows the presence of
two regimes of growth atP50.2. For P>0.3 there exists
only one regime of growth with a single value of the grow
exponentb. Figure 6 shows a log-log plot ofW versust
when P50.4 and for different system sizes. It is appare

FIG. 4. View of the distribution of particles over a section of t
surface of size 10 000, where typeA is white and typeC is black,
for log2 t510.5 and for two system sizes,~a! L2510 000 and~b!
L2540 000.
of

e

t

from this figure that only one value ofb is extracted. The
inset of Fig. 6 shows how the exponenta is determined. The
values ofa50.51 andb50.49 point to a columnar growth
morphology at this value ofP resulting from the presence o
void formation and diffusion processes. Voids enhance
growth rate in the areas of typeA while surface diffusion
slows down the growth rate of areas that include typeC.
Therefore, a surface with a slightly larger fluctuation
height appears, as indicated from the values of the ex
nents. Figure 7 shows a log-log plot for the surface rou
ness versus time for different values of the probability 0
<P<0.999. This figure shows that a decrease in the surf

FIG. 5. Log-log plot of the surface width versus time for 0
<P<0.3 for system sizeL2510 000. The left inset shows the su
face width versus time forP50.2 for different system sizes. Th
right inset shows the presence of the two regimes of growth foP
,0.3 whenL2510 000.

FIG. 6. Log-log plot of the surface width versus time forP
50.4. The inset shows a log-log plot ofWsat versusL.
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PRE 61 6153DYNAMIC SCALING IN A BALLISTIC DEPOSITION . . .
width happens asP increases. It is also seen thatW has the
same trend for 0.4<P<0.6. ForP>0.8 it becomes apparen
that the surface width saturates at longer times. ForP
.0.95 the kinetics change and the surface width saturate
a very long time. The inset of Fig. 7 indicates that the surf
width grows with time, having an exponentb, and we are
able to define an exponenta whenP50.99. Also as shown
in Fig. 7, even forP50.999,W increases with time until it
saturates, giving an indication of a power law growth duri
the intermediate time. At this limit ofP we could not extract
values for the exponentsa and b due to a computationa
limit for large system sizes. Here, diffusion becomes grea
dominant since particles of typeC deposit much more often
than those of typeA. However, the presence of typeA allows
the growth to continue, where some voids are formed un
the surface that could not be eliminated by surface diffusi
Therefore, the surface grows at a low rate and takes a
time to reach saturation. According to the rules of the mod
when P51, all deposited particles are ofC type and no
deposition occurs, since we do not allow deposition of p
ticles C over C. Figures 8~a! and ~b! show the values of the
exponentsa andb, which are plotted versus the probabili
P. The values of exponents from both plots of Fig. 8 sh
that asP increases the exponents decrease. This means
upon increasing the diffusion processes on the surface,
fluctuation in height decreases and the aggregate formed
fewer voids inside. Both plots also indicate that for 0.6<P
<0.8 the values of both exponents are approximately c
stant. This points to a surface with approximately the sa
morphology within this interval and a balance betwe
overhangs/voids and diffusion occurs through the grow
stages. Also, both plots show that atP50.99, where surface
diffusion becomes significant, the values of the expone
are a50.21 andb50.26. These values are small and th
indicate that surface diffusion diminishes the formation
voids under the surface. It is well known in the model w
surface relaxation that the exponentsa5b50 and the

FIG. 7. Log-log plot of the surface width versus time for 0
<P<0.999 for L2510 000. The inset showsW versus t for P
50.99 and for different system sizes.
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model belongs to the EW universality class@1,2,10#. How-
ever, both exponents show that, in 211 dimensions in our
case, whenP50.99 the width scales nonlogarithmically wit
time and the saturation width does not depend on the lo
rithm of the system size. Although we used the ballis
deposition model for two species which tend to the usual
model whenP50 and follow KPZ universality, we do no
observe the features of this universality when we switch
the parameterP, even for smaller values ofP. Also, when
diffusion dominates, the values ofa andb do not approach
zero and the model does not belong to the EW universa
class.

To complete the study of these kinetics we have measu
the average velocity of the interface as the value ofP in-
creases. Figure 9 shows a plot of the average velocity ve
log2 t. It is clearly seen that, forP50.1, the velocity de-

FIG. 8. ~a! The exponenta versus the probabilityP. ~b! The
exponentb versus the probabilityP. Note that the lines in both
figures are drawn for convenience.
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6154 PRE 61HASSAN F. EL-NASHAR AND HILDA A. CERDEIRA
creases, and it seems that the interface is driven to satu
due to the presence of diffusion, at the intermediate tim
which tries to overcome the overhangs/voids. However,
to the presence of more particlesA thanC, the voids under
the surface increase the rate of growth and the effect of
fusion in the long time limit becomes smaller. This enhan
the growth and finally the velocity increases. WhenP ap-
proaches 0.2 the diffusion process becomes somewhat m
important, and in the long time limit, although the void fo
mation tries to drive the interface with higher velocity, th
diffusion balances it, slowing the growth rate until the su
face width saturates. For 0.3<P<0.99, the average velocit
has the same features but with lower values at saturatio
does not approach zero however. Figure 10 shows the
sity of the aggregate when it is plotted versusP for system
size equal to 10 000. The figure shows that the density

FIG. 9. The average velocity as a function of time for differe
values ofP whenL2510 000.

FIG. 10. The densityr versus the probabilityP for L2

510 000. Connecting line is drawn for convenience.
ate
,
e

if-
s

ore

-

it
n-

-

creases rapidly as the value ofP increases for 0.1<P<0.2,
while it increases little for 0.3<P<0.8. Then the density
increases more forP.0.8. It is revealed from Fig. 10 tha
the voids are formed more under the surface for small val
of P. This result is due to formation of more overhangs d
ing growth while diffusion takes place only over small are
on the surface. AsP increases the diffusion process tries
equate the overhangs/voids, leading to the previous kine
of Figs. 5 and 7. ForP>0.99, the value of the densityr
'0.96 shows that the formation of overhangs/voids is s
occurring. Such processes cause the lateral and perpendi
correlations to grow nonlogarithmically with system size a
time, respectively. Figures 11~a! and ~b! show surface plots
for P50.3 andP50.99, respectively. It is observed that fo
P50.3 the morphology is dominated by columnar grow
and a surface of notable fluctuations in height is formed~as
indicated by the large values ofa and b!. For P50.99 the
morphology reveals that the surface is smooth due to re
ation, which makes the surface width grow with small valu
of a andb. So the importance of allowing diffusion for th
active particle to smooth the surface is shown clearly in
pictures of Fig. 11, in addition to its role in eliminating th
nonlocality described in Ref.@4#.

All of the above results prompt us to argue that, up
introducing diffusion to the BD model for a binary system

t

FIG. 11. Three dimensional plots for the surface at saturation
two different values ofP and for L2510 000; ~a! P50.3 and~b!
P50.99.
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PRE 61 6155DYNAMIC SCALING IN A BALLISTIC DEPOSITION . . .
the behavior of kinetic roughening as well as the morp
logical structure are changed. Although we used a BD mo
with surface relaxation, which reduces to the usual B
model that follows KPZ universality, we observed a chan
in universality after switching on the parameterP and allow-
ing diffusion for both particles. AsP increases and the dif
fusion processes over the surface become dominant, the
ues of the exponents decrease, giving an indication o
smoothing of the surface due to relaxation. However, aP
approaches unity the values of the exponents do not
proach zero, as in the case of a BD model with surface
. E
-
el

e

al-
a

p-
f-

fusion @7#, and the model does not belong to the EW univ
sality class.

Our results lead to a conclusion that in 211 dimensions
there may be a different universal behavior for models
binary systems. However, in order to clarify this argume
and to determine which universality class our model belo
to, a further detailed study of correlations is required.
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