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Dynamic scaling in a ballistic deposition model for a binary system
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A ballistic deposition model for the kinetics of surface growth for two species is introduced as a description
of the evolution of a surface under vapor deposition. We used a tunable par&heteontrol the deposition
of the particles such that one type is deposited with probalfityhile the other is deposited with-1P.
Simulations in 2+ 1 dimensions using local surface diffusion lead to the formation of a rough surface whose
dynamical evolution is not that of the Kardar-Parisi-Zhang universality class. Also, when surface diffusion
becomes dominant, the model moves away from the Edwards-Wilkinson universality.

PACS numbegps): 05.40—a, 05.70.Ln, 68.10.Jy, 68.35.Ct

The growth of surfaces by vapor deposition and itsballistic deposition(BD) model. Here, particles rain down
mechanisms have been extensively studied in the[da8t vertically onto a substrate and join the aggregate at the point
motivated by technological applications. Most previous stud-of contact, giving rise to a rather interesting structure: The
ies have dealt with the growth of deposited components o$urface is a self-affine fractal although the bulk, which is
only one kind. However, since growth of two or more spe-filled with voids inside, is compadtl]. The BD model cap-
cies is common in modern technology, the study of such ofyres the essential features of processes such as vapor depo-
problems has great interest which extends to its relevance igition. However, it does not provide an adequate representa-
understanding nonequilibrium statistical mechanics, sincon of diffusion on the surface. Such processes can be found
the growth process may belong to a new universality clasg, growth where the newly arriving particle diffuses to a
[3-5]. local minimum along the surface of the deposited material.

It is well known that a stochastically growing surface ex- syrface diffusion leads to surface relaxation, which tends to
hibits scaling behavior and evolves to a steady state withoWmooth out the surfadd]. Therefore, to simulate deposition
a characteristic time or |ength scale. Therefore, Starting Wltlgls rea"stica”y as possib|ey both diffusion and overhangs/
an initially flat substrate and defining the surface widthygids must be includef,8]. Thus, in the growing system,

W(L,t) by there may exist different kinds of interactions for the two
1 species in addition to the overhangs and diffusion, which in

2 _ h(r .t —h(d 2 1 turn yiel_d a different klngtlcs of growth associated with a
WALY La_lZ [h(r.H)=h(v)] @) change in the morphological structure of the aggregate. Pel-

ligrini and Jullien[7] described surface growth according to
wherelL is the system sizB(r,t) is the height of the surface a model with two kinds of particles, sticky and sliding. They
at positionr and timet, h(t) is the average height at tinte  used a parameterto control the process of diffusion on the
andd—1 is the substrate dimension, the scaling ld is surface. Whert=0 their model is similar to that of Family
given by [9], i.e., a model with surface reconstruction that belongs to

the Edwards and WilkinsoflEW) universality clasg10],

W(L,t)=L*f(t/LYP). (2)  while, whenc=1, it is equivalent to the plain ballistic model

that fits in the KPZ universality class. However, they do not
The roughness exponeatand the growth exponert char-  present a kinetic study and how the surface evolves with
acterize the dynamical scaling behavior. The functi¢r) time to a steady state. In a previous redditwe have used
scales ad(x)=x” for x<1 andf(x)=const forx>1. This a BD model for two kinds of particlegctive and inactive
scaling behavior has been studied in various systems aridcluding diffusion on the surface where we allowed the fol-
models and has been argued to be univdrs@]. Many of  lowing interactions: the active particle falling over a given

these models belong to the Kardar-Parisi-Zh@iBZ) uni-  column (or site) always sticks over an active particle, or it
versality clas$6]. However, there have been many efforts tosticks over an inactive particle when there is an active par-
discover different universality classes. ticle among the nearest neighbors of the chosen column one

Even though models of surface growth for binary systemgayer higher than the inactive one. Diffusion to a local mini-
have been presented in previous wdi&-5,7, little is  mum around the neighborhood of the chosen site is intro-
known about the kinetic roughening originating in theseduced when an inactive particle deposits over an active one
models and our understanding of this kind of growth is stillor deposits over an inactive particle with an active particle
in an early phase. Among the models used to represent tr@mong the nearest neighbors one step higher. We found a
growth of composite systems, a well studied example is thenorphological structural transition as the probability of be-
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ing an inactive particle increases. Although we introduced 1 2 4 5 6 7
surface diffusion in the BD model, the values of the ex- R ° ° e °
tracted exponents do not give an indication that the univer-— i

sality is changed from KPZ to EW type. Such a transition is *-11
attributed to the presence of three different processes durin
growth; overhanging, nonlocality, and surface diffusion. The [ |
competition between these three processes finally leads to @
different kinetics.

In this paper, we focus our studies on kinetic roughening,
scaling, and morphologies in a model for binary systems.
Such a study may help to understand to which universalityﬁ
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class the model belongs. We concentrate on the situation
where surface diffusion is introduced for both types of spe-
cies. We use a BD growth model which includes surface [ [ |
relaxation for both components. We introduce interactions ®)
between the two species since one kind is necessary for the
deposition to occur, while the presence of the other kind FIG. 1. A cross sectional piece of the aggregate. White squares
allows diffusion to take place. This in turn may lead to anstand for particleé and dark squares symbolize particles(@ The
elimination of the nonlocal growth and formation of more empty circles denote the deposited particles of hp&he deposi-
voids under the surfadet]. Here, we present results of nu- tion is indicated by the arrows. The diffusion process is denoted by
merical simulations for the growth kinetcs and morphologyfa“en particles 1 and 3(b) The full circles represent particles of
in 2+ 1 dimensions. We use the probabilRyas a continu- typ_e C._The deposition is indicated _by arrows. The process of dif-
ously tunable parameter to control the system, where th&/Sion is represented by fallen particles 2, 5, and 6.
deposition of two species occurs as—([P) for one type of
component andP for the other type. particle A that meets, either at the top of the chosen column
The model in this work is based on the BD model, which (particles 4 and por sideways(particles 2 and 6 on the
is composed of two kinds of particlésand C, with nearest other hand, if no particlé\ is found the incoming particle
neighbor interactions between particles. The deposition ocsticks to the top of the chosen column and then diffuses
curs on a substrate of siz& with probabilities - P andP  (particles 1 and Bor remains on it if the neighbors are at
for particlesA and C, respectively. Surface diffusion is in- equal or higher heighfparticle 3. When the incoming par-
troduced for both types of particles since it plays an impor-icle is of typeC [process shown in Fig.()], it does not
tant role from the point of view of applications to real growth stick to the top of the chosen column if the latter is higher
processes. We do not allow reconstruction processes in thban the neighboring columns: it diffuses if it meets a par-
bulk since the rate of this kind of process is much lower tharticle A (particle 5 or is discarded if it finds a particl€ and
the rate of processes on the surface. Also, we do not includiere are no particled\ along the neighboring columns
evaporation processes in the model since deposition occuhsgher by one stegparticle 1; on the other hand, if the
more frequently than evaporation. The model we propose ishosen column is lower than its neighbors and the highest
appropriate to describe reactions that take place on the gromeighbor contains a particld, the particle will diffuse if
ing surface of materials. It represents the surface growth of there is at least one neighboring column lower than the cho-
material with a low concentration of impurities. These impu-sen oneparticle § or it will diffuse downward(particle 2;
rities are represented by particl€swhich have fewer active when all the surrounding columns are higher than the chosen
bonds than particleA. Further, it describes the deposition of one, the incoming particle will stick on top of the chosen site
two kinds of particlegone heavy and one lighwith differ-  if it finds a particleA either at the tofparticle 4 or sideways
ent attractive forces. (particles 3, otherwise the particle will be discardégphrticle
The growth process, which consists of particles fallingl). In Fig. 1, particle 7 represents the border of the surface
randomly straight down one at a time onto a growing sur-and we should interpret the last column depicted as a neigh-
face, is as follows: at first a column is selected at random anflor to the first one due to the boundary conditions. Notice
then a particléA (or particleC) is deposited on the surface of that a process of type | in Fig(d), where a particléA has
the aggregate with a probability-1P (or P). Diffusion re-  deposited on top of &, can happen because ir-4 dimen-
sults when a particle deposits over one of a different typesions there are four neighbors and the particle adheres to a
that is, particleA deposits over particl€ or particleC de-  side of any of those neighbors, or because of diffusion. Also
posits over typéA. In general, the presence of partideis  a process of type Il occurs due to lateral sedimentation at any
important for deposition to happen while tyfeis allowing  one of the four neighbors higher than the chosen site. A
diffusion to appear. A cross section of the aggregate iprocess of type Ill arises since particlesalways diffuse to
shown in Figs. (a) and Xb). The white squares represent the the local minimum on the surface and maybe this site is
aggregated particle of typA and dark squares represent located at the edge of the area of local diffusion.
those of typeC. Circles, which account for both types We performed simulations for this model on a square lat-
(empty andC (full), denote the incoming particles. The path tice with d=3. The aggregation occurs in th& direction
of the fallen particle is shown by the arrows. The depositionwith periodic boundary conditions in théandY directions.
of particles of typeA occurs according to the following pro- The statistical average is obtained over 500 independent
cesses depicted in Fig(a: particle A will stick to the first  simulations for each parameter.
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FIG. 2. Log-log plot of the surface width versus time fBr
=0.1 and for different system sizes. The upper left inset shows the
density versus system size. The upper right inset shows the exis
tence of the two regime growth exponents whef=10 000. The
lower inset showsB,(L) versus different system sizes.

Figure 2 shows a log-log plot of the surface widthas a
function of the time of growth (number of deposited layers
for a probability P=0.1 for different lattice sizes. We ob- (b)
serve surprising results: the surface widtbhughnessW in- _ _ o
creases as a function btluring three different stages. In the  FIG- 3. Three dimensional plots of the surface with different
first stage, where Zlog,t<3, roughness enlarges dg(t)  System sizes for log=10.5; (a) L= 10000 and(b) L =40 000.
~1953 and this stage may be considered as a tran§@int
During the second stage the surface width growsAgs) ered byC, diffusion is more frequent, while over the areas of
~tA1 whereB,=0.37 for all system sizes. Later, the surfaceA type, adhering is dominant. Also overhangs become more
roughness extends a@/(t)~t#2(1)  where 0.5 B,(L) common along the columns of the areas of typesince the
<2.25 for 3606<L.?><40 000. The upper right inset of Fig. 2 areas of typeA grow faster than those of typ€. These
shows clearly the two growth exponents for a system sizeffects lead to a surface with steep slopes where the growth
L?=10000. It is clear from the figure that as the time in- exponent is high. Figures(@ and 4b) show a section of
creases the surface width does not reach saturation. Simularea equal to 10 000 where the distribution of particles over
tions (with less statistics due to computational limit®er the surface for system sizes 10000 and 40000 is shown at
larger times than those presented in Fig. 2 showWalbes log,t=10.5. We notice from this figure that the areas of type
not reach saturation. In an attempt to interpret the abov€ increase as size increases. So wide areas over the surface
results, we have investigated the morphology. Figures 3 grow at a slower speed. Finally, deep grooves are formed
and 3b) show a surface view taken at lgg=10.5 for two  which become wider as system size increases. Also, the
values of system siz&,2=10000 and 40 000, respectively. overhangs along the columns that contain particles of fype
The figure reveals that the surface has a rough structurecrease the growth rate along these columns. Figure 2
which becomes rougher as the system size increases. Tkbows that the density for the long time limit(the top left
values of both exponents suggest that there are two regiméssed, wherep=N/(h)L?, remains constant when the sys-
of growth: one at intermediate times and one at long timestem size increases for the same valu€p$trengthening the
Also, for the larger system size deep and large grooves amrgument above that overhanging is common and has the
formed over the surface, resulting in large fluctuations ofsame contribution for all system sizes. Figure 5 shows a
height. Thus, surface width grows having an exponentog-log plot of the surface roughness versus time for values
Bo(L)>B1. The reason for the sudden steep slopes over thef the probability 0.%P=<0.3 when the system size equals
surface, which increase with system size, can be explained 49 000. This figure reveals that the saturation of the surface
follows. During growth, the deposition of typ& is more  width in the long time limit can be defined fé*=0.18 (see
frequent than that of typ€. Diffusion is allowed for typeC  the left inset of Fig. b We argue that this behavior is due to
more than for typé since it is more probable thatwill find the balance, in the long time limit, between diffusion and
another particléA to stick to it than aC type. In addition, if  overhangs. That is, diffusion competes with overhangs/voids
A sticks toC it diffuses to a local minimum in the neighbor- and drives the surface width to saturate ear{during the
hood of the chosen column. Therefore, over the areas covirst regimeg. Within the second regime overhangs dominate
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FIG. 5. Log-log plot of the surface width versus time for 0.1

<P=0.3 for system siz&2=10000. The left inset shows the sur-

face width versus time foP=0.2 for different system sizes. The

< 0.3 whenL?= 10 000.
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right inset shows the presence of the two regimes of growttPfor

from this figure that only one value @8 is extracted. The
inset of Fig. 6 shows how the exponents determined. The
values ofa=0.51 andB=0.49 point to a columnar growth
morphology at this value d? resulting from the presence of
void formation and diffusion processes. Voids enhance the
growth rate in the areas of typ& while surface diffusion
slows down the growth rate of areas that include type

Therefore, a surface with a slightly larger fluctuation in
height appears, as indicated from the values of the expo-
nents. Figure 7 shows a log-log plot for the surface rough-
ness versus time for different values of the probability 0.3
=<P=0.999. This figure shows that a decrease in the surface
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FIG. 4. View of the distribution of particles over a section of the
surface of size 10 000, where typeis white and typeC is black,
for log,t=10.5 and for two system size&) L?=10000 and(b)
L2=40000.

and increase the growth rate. However, the two regimes of
growth are present foP<<0.3 as indicated from the right
inset of Fig. 5, while the left inset shows the presence of the
two regimes of growth aP=0.2. For P=0.3 there exists
only one regime of growth with a single value of the growth
exponentB. Figure 6 shows a log-log plot oV versust

log, W

P=0.40

log, t

FIG. 6. Log-log plot of the surface width versus time fBr
when P=0.4 and for different system sizes. It is apparent=0.4. The inset shows a log-log plot Wi, versusL.
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FIG. 7. Log-log plot of the surface width versus time for 0.4 07
<P=<0.999 for L?=10000. The inset shows versust for P :
=0.99 and for different system sizes. -
width happens aP increases. It is also seen thathas the 0.6
same trend for 04 P<0.6. ForP=0.8 it becomes apparent
that the surface width saturates at longer times. Por
>0.95 the kinetics change and the surface width saturates ¢ (.5
a very long time. The inset of Fig. 7 indicates that the surfacex
width grows with time, having an exponegt and we are “g’
able to define an exponentwhenP=0.99. Also as shown g 04
in Fig. 7, even forP=0.999,W increases with time until it 7 e
saturates, giving an indication of a power law growth during _
the intermediate time. At this limit d? we could not extract
values for the exponenta and 8 due to a computational 0.3+ —n
limit for large system sizes. Here, diffusion becomes greatly
dominant since particles of typ@ deposit much more often ]
than those of typé. However, the presence of typeallows 0.2 . : . : . : .
the growth to continue, where some voids are formed undel 02 04 06 08 10
the surface that could not be eliminated by surface diffusion. (, probability P

Therefore, the surface grows at a low rate and takes a long

time to reach saturation. According to the rules of the model, FIG. 8. (3 The exponentx versus the probability. (b) The
when P=1, all deposited particles are @ type and no exponentB versus the probability?. Note that the lines in both
deposition occurs, since we do not allow deposition of parfigures are drawn for convenience.

ticles C over C. Figures 8a) and(b) show the values of the

exponentsy and 8, which are plotted versus the probability model belongs to the EW universality cla€s2,10. How-

P. The values of exponents from both plots of Fig. 8 showever, both exponents show that, int2 dimensions in our
that asP increases the exponents decrease. This means thaase, wherP =0.99 the width scales nonlogarithmically with
upon increasing the diffusion processes on the surface, théme and the saturation width does not depend on the loga-
fluctuation in height decreases and the aggregate formed hathm of the system size. Although we used the ballistic
fewer voids inside. Both plots also indicate that for€8  deposition model for two species which tend to the usual BD
=<0.8 the values of both exponents are approximately conmodel whenP=0 and follow KPZ universality, we do not
stant. This points to a surface with approximately the samebserve the features of this universality when we switch on
morphology within this interval and a balance betweenthe parameteP, even for smaller values d®. Also, when
overhangs/voids and diffusion occurs through the growthdiffusion dominates, the values afand 8 do not approach
stages. Also, both plots show thatR#= 0.99, where surface zero and the model does not belong to the EW universality
diffusion becomes significant, the values of the exponentslass.

are «=0.21 andB=0.26. These values are small and they To complete the study of these kinetics we have measured
indicate that surface diffusion diminishes the formation ofthe average velocity of the interface as the valuePah-
voids under the surface. It is well known in the model with creases. Figure 9 shows a plot of the average velocity versus
surface relaxation that the exponents=3=0 and the log,t. It is clearly seen that, foP=0.1, the velocity de-
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FIG. 9. The average velocity as a function of time for different
values ofP whenL2=10 000.

creases, and it seems that the interface is driven to saturat
due to the presence of diffusion, at the intermediate time,
which tries to overcome the overhangs/voids. However, due
to the presence of more particl@sthan C, the voids under
the surface increase the rate of growth and the effect of dif-
fusion in the long time limit becomes smaller. This enhances
the growth and finally the velocity increases. Wherap-
proaches 0.2 the diffusion process becomes somewhat mot
important, and in the long time limit, although the void for- ®)
mation tries to drive the interface with higher velocity, the
diffusion balances it, slowing the growth rate until the sur-, = o1 oo 0P and forL2=10 000: (8 P=0.3 and(b)
face width saturates. For Gs3<0.99, the average velocity P=0.99.

has the same features but with lower values at saturation; it

does not approach zero however. Figure 10 shows the de
sity of the aggregate when it is plotted verduigor system
size equal to 10000. The figure shows that the density in

FIG. 11. Three dimensional plots for the surface at saturation for

Qreases rapidly as the value Bfincreases for 0&£P=<0.2,
while it increases little for 0.8 P=<0.8. Then the density
increases more foP>0.8. It is revealed from Fig. 10 that
the voids are formed more under the surface for small values
of P. This result is due to formation of more overhangs dur-
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ing growth while diffusion takes place only over small areas
on the surface. A® increases the diffusion process tries to
equate the overhangs/voids, leading to the previous kinetics
of Figs. 5 and 7. FoiP=0.99, the value of the density
~0.96 shows that the formation of overhangs/voids is still
occurring. Such processes cause the lateral and perpendicular

a 080

. correlations to grow nonlogarithmically with system size and

’g s time, respectively. Figures 1d and (b) show surface plots

5 070 — for P=0.3 andP=0.99, respectively. It is observed that for
065 P=0.3 the morphology is dominated by columnar growth
060 and a surface of notable fluctuations in height is fornfesl

f=3
~J
wn
T T T t1I 1T I rrrrrrrr:

=3
=3
=]
=
I
[}
=3
w

04 05 06 07 08
probability P

FIG. 10. The densityp versus the probabilityP for L2

=10000. Connecting line is drawn for convenience.

0.9

1.0

indicated by the large values of and 8). For P=0.99 the
morphology reveals that the surface is smooth due to relax-
ation, which makes the surface width grow with small values
of a« and B. So the importance of allowing diffusion for the
active particle to smooth the surface is shown clearly in the
pictures of Fig. 11, in addition to its role in eliminating the
nonlocality described in Ref4].

All of the above results prompt us to argue that, upon
introducing diffusion to the BD model for a binary system,
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the behavior of kinetic roughening as well as the morpho{usion[7], and the model does not belong to the EW univer-
logical structure are changed. Although we used a BD modesality class.

with surface relaxation, which reduces to the usual BD Our results lead to a conclusion that irt2 dimensions
model that follows KPZ universality, we observed a changd/€ré may be a different universal behavior for models of
in universality after switching on the paramekand allow- Inary systems. Hovyever,'ln ord_e r to clarify this argument
. e . i .. and to determine which universality class our model belongs
ing diffusion for both particles. A® increases and the dif- to, a further detailed study of correlations is required.
fusion processes over the surface become dominant, the val-

ues of the exponents decrease, giving an indication of a H.F.E. acknowledges support from the Abdus Salam In-
smoothing of the surface due to relaxation. HoweverPas ternational Center for Theoretical Physid€TP). He also

approaches unity the values of the exponents do not a&banks Professor M. Shalaby of Ain Shams University for his
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