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Growth kinetics and morphology of a ballistic deposition model that incorporates surface
diffusion for two species
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We introduce a ballistic deposition model for two kinds of partidlestive and inactivein (2+1) dimen-
sions upon introducing surface diffusion for the inactive particles. A morphological structural transition is
found as the probability of being the inactive particle increases. This transition is well defined by the change
in the behavior of the surface width when it is plotted as a function of time and probability. The expanents
and B calculated for different values of probability show the same behavior. The presence of both types of
particles gives rise to three different processes that control the growing surface: overhanging, nonlocal growth,
and diffusion. It finally leads to a morphological structural transition where the universality changes away from
that of Kardar, Parisi, and Zhang, in €2L) dimensions, but not into that of Edwards and Wilkinson.
[S1063-651X%99)05607-X]

PACS numbsg(s): 05.40—a, 05.70.Ln, 68.10.Jy, 68.35.Ct

[. INTRODUCTION (d—1)-dimensional substrate and aggregate upon first con-
tact[6], giving rise to a rather interesting structure: the sur-
The growth of surfaces and interfaces has recently atface is a self-affine fractal although the bulk, which is filled
tracted great interest motivated by technological applicaof voids inside, is compadB]. One of the successful theo-
tions. Most rough surfaces are formed under conditions thattical approaches to describe the BD model is that of
are far from equilibrium. Therefore, the study of such phe-Kardar-Parisi-ZhangkPZ) equation[7],
nomena has a relevant importance in understanding nonequi-
librium statistical mechanics at the fundamental level. @_ V2h A 2
: : o =vVsh+ 5 (Vh)“+5(r,t), )
Simple models have played a major role in this understand- ot 2
ing by studying two important aspects, kinetics and morphol-

> -~ which is a nonlinear equation for the local growth of the
ogy. Kinetics helps to understand how surfaces evolve W'tkbrofile h(rt) of a moving interface about a

time while morphology provides a clear interpretation of the(d_ 1)-dimensional flat substrate. However, although the

grol\t,vi?vbgleﬂﬁts)[vtr:?]ﬁat a stochastically arowing surface ex- BD model captures the essential features of processes such
Y9 9 ... as vapor deposition, it does not provide an adequate repre-

hibits scaling behavior and evolves to a steady state W'thoqalentation of diffusion on the surface. Such processes can be
a cha}r_acteristic time or Iengt_h _scale. Therefore,_starting Witl?ound in growth where the newly arri\./ing particle diffuses to
E\n initially flat substrate, defining the surface widhi(L,t) a local minimum along the surface of the deposited material.
y Surface diffusion leads to surface relaxation which tends to
1 o smooth the surfacgl]. Therefore, when a surface diffusion
WA(L,Y) = File [h(r,t)—h(t)]%, (1)  process is introduced, the linear teffth representing dif-
r fusion will compete with the nonlinear ternV)?, which
: . . . symbolizes the lateral sedimentation in the KPZ equation. As
whereL is the system sizé(r.t) is the height of the surface jitr,sion hecomes the dominant process, the linear term wins
at positionr and timet, h(t) is the average height at time  anq the universality will be change®] to the Edwards-
andd—1 is the substrate dimension, the scaling lad)is  \jlkinson (EW) universality[9], which is described by the
given by equation

=L alf

W(L,t)=L*f(t/LYP). (2 %zyvzhjtn(r,t). @
The roughness exponeatand the growth exponerg char-
acterize the dynamical scaling behavior. The functi¢r) In this case voids are no longer formed inside the bulk as a
scales ag(x)=x” for x<1 andf(x)=const forx>1. This  result of the reconstruction trend during the grofth Also
scaling behavior has been studied in various systems arid this case for (2 1)-dimensional growth the exponents
models and has been argued to be univeikaB,5. a=B=0 due to the logarithmic variation of the surface

Among the models used to represent the growth of rouglwidth with both time and system size, respectively.
surfaces, a well-studied example is the ballistic deposition Most previous studies have dealt with the surface growth

(BD) model. Here, particles rain down vertically onto a of one type of particlef1—3,5. Generally, in the growth of
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FIG. 1. A cross sectional piece of the aggregate. White squares 1.0 — T
stand for particleA and dark squares symbolize particlés (a) 0 2 4 6 8 10 12 14
The empty circles denote the deposited particles of #pdhe log,t

deposition is indicated by the arrow) The full circles represent
particles of typeC. The deposition is indicated by arrows. The
process of diffusion is represented by fallen particles 5 and 6.

FIG. 2. Log-log plot of the surface width versus time for differ-
ent values ofP at fixed sizeL =200.

real materials one should take into consideration that differ®f particlesC on the surface: a competition between the dif-
ent kinds of particles are deposited. Thus, in the growingusion process on the surface and overhanging and nonlocal
system, there may exist different kinds of interactions fordrowth may happen. Although the diffusion may suppress
different particles, which in turn yields a different kinetics of the effect of nonlocal growth, it will not completely cancel
growth associated with a change in the morphological structhat of overhanging. Therefore, the Laplacian te¥# wil

ture of the aggregate. Pelligrini and JulliéR) [10,11) de-  not overcome totally the nonlinear ternVt)? in Eq. (3),
scribed a surface growth according to a model with twowhich will not reduce to Eq(2).

kinds of particles, sticky and sliding, where both are active. The presentation of this paper is as follows. In Sec. I, the
This model interpolates between a diffusive model whichmodel and the physical motivations are presented. In Sec. Il
incorporates surface diffusion and the usual ballistic deposithe dynamical scaling behavior and the morphology are dis-
tion model. They used a parameteto control the process of cussed. Finally, a conclusion is given in the last section.
diffusion on the surface. Wher=0 their model is similar to
that of Family[12], i.e., a model with surface reconstruction,
while, whenc=1, it is equivalent to the plain ballistic ) ] )
model. However, they do not present the kinetic study and Ve consider a model composed of two kinds of particles,
how the surface evolves with time to a steady state. In pre® @nd C, which fall on a square substrate of sizé, with
vious reports[13—15, we have used a BD model for two probabilities 1= P and P, respectively. Particlé\ is active,
kinds of particlegactive and inactivebut without including

diffusion on the surface and found a morphological structural 3.0
transition as the probability of being an inactive particle in-
creases. Such transition is attributed to the presence of both
types of particles and the tendency to form more vacancies
inside the bulk of the aggregate where overhanging becomes
dominant. At the same time there exists a nonlocal growth 20
due to the formation of particl€ clusters on the surface that
do not allow other particles to stick over them.

In this work, we present a BD model for two kinds of
particles; one of them is active with probability-1P and the
other inactive with probability?, with a surface diffusion
towards a local minimum for the inactive particles. We use
the probabilityP as a continuously tunable parameter to con-
trol the system. We depict the growth kinetics in+«2) 05
dimensions as well as the morphological structure in order to 1
interpret the results which have been obtained. We will show 00 i
that such diffusion processes will not change the universality el s A s s 71 8 s
class from KPZ to EW. The appearance of different types of
particles may strengthen the lateral sedimentation which in
turn provokes formation of voids under the surface as well as FIG. 3. Surface width as function of time fd?>0.8 when
nonlocal growth by virtue of the constitution of inert clusters L =600.

Il. DEPOSITION MODEL
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FIG. 4. Saturated surface width versus the probability when (&) Probability P
L=300. The connected lines are drawn for convenience.
0.24 -
while particleC is inactive; the meaning of active and inac- ™.
tive will become clear after the description of the process. 022 ~.
The model we propose is appropriate to describe chemical i \.
reactions which take place on the growing surface of mate- 454 \.
rials. For instance, it models the reaction procAssB=C i \.
where particleA and particleB are active. Once particla is « 018 \.\
touched by particld®, the combination produces a prod@@t += i °\
which is no longer active. The particlk is chosen with a Q 464 »
probability 1—P, and the particleB with P. That is, the & | \.
reactantC is produced with the probability when P is i 0.14 \

small. Thus, in this system, some of the surface sites con- ] °
tinue to react while some sites do not. It also represents the 45
surface growth of a material with low concentration of im- _

purities. These impurities are represented by partiCle 0.10 -

which has fewer active bonds than partidle Further, it i

describes the deposition of two kinds of particleae heavy 0.08 . | i | . | : | :

and one light with different attractive forces. 0.0 02 0.4 0.6 0.8 1.0
The growth process, which consists of particles falling () Probability P

randomly straight down one at a time onto a growing sur-

face, is as follows: at first a column is selected at random and FIG. 5. Probability versuga) the exponentr and(b) the expo-
then a particléA (or particleC) is deposited on the surface of nent 8. The lines connecting points in each curve are drawn for
the aggregate with a probability-1P (or P). A cross section —convenience.

of the aggregate is shown in Figsaland Xb). The white

squares represent the aggregated particles ofAyged dark  contains particléd, the particle will diffuse if there is at least
squares represent those of typeCircles, which account for one neighboring column lower than the chosen @eeticles
both typesA (empty and C (full), denote the incoming par- 6) or it will diffuse downward(particle 2; when all the sur-
ticles. The path of the fallen particle is shown by the arrowsrounding columns are higher than the chosen one, the incom-
The deposition of particles of typ& occurs according to the ing particle will stick on top of it if it finds a particlé either
following processes depicted in Fig(al: particle A will at the top(particle 4 or sidewaygqparticles 3, otherwise the
stick to the first particléA that it meets, either at the top of particle will be discardedparticles 1 and )7 Therefore, the
the chosen columfparticles 4 and bor sidewaygparticles  only process of deposition of particles over inactive ones
2, 3, and 6; on the other hand, if no particl& is found the (type C) happens when through lateral sedimentati@atien
incoming particle will be discardegbarticles 1 and )7 When  particle 3 or diffusion (fallen particle 5 they stick to a par-
the incoming particle is of typ&€ [process shown in Fig. ticle A. Otherwise, the particle should be discarded. Notice
1(b)], it does not stick to the top of the chosen column if thethat a process of type |, in Fig(d), where a particléA has
latter is higher than the neighboring columns: it diffuses if itdeposited on top of &, can happen because in{2) di-
meets a particlé (particle 5 or it is discarded if it finds a mensions there are four neighbors and the particle adheres to
particle C (particle 7; on the other hand, if the chosen col- a side of any of those neighbors. Also a process of type Il
umn is lower than its neighbors and the highest neighbooccurs due to overhanging to any one of the four neighbors
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>0 FIG. 7. Bulk density measured relative to that of BD versus the

25 probability. The lines between points are drawn for convenience.

2.0 each parameter. All simulations have been carried out for

= system sizeL>100 to go beyond the limit of size depen-
2 157 dence.
gﬁ 10_’ _____ L=100 Figure 2 ;hows a log-log plot of .the surfgce wi(w]as a
- /S L=200 function of timet (number of deposited particlefor differ-
0‘5_' / ........... L=300 ent values of the deposition probabiliB/and fixed system
SN L=400 sizeL=200. It is seen from this figure that the surface width
o0/ ———- L=500 increases fast and finally saturates to a fixed value after ex-
1 periencing a slowdown. FaP=0 the curve represents the
26 4———7—F"TT—T 7 usual BD model for only one kind of particl¢43,15. The
6 2 4 58 &8 0 12 14 16 scaling result for the exponeidt is the same as for the BD
(b) log, t model, that is3=0.238+0.005[5]. For values ofP#0, the

o surface width decreases as the probability increases and the
FIG. 6. (@) Log-log plot of the lattice size and the saturated g5 ration state is reached early. However, o 0.6, the
surface width wherP=0.4; the calculated exponent =035 g tace width increases again and the system saturates faster.
t0.00?._(b) Log-log plot of the surface width versus tlme for dif- It also appears that foP=0.75 there is a reduction in the
ff:)egtl sizes wherP=0.4; the calculated exponent §§=0.19 surface width which increases in depth as the probability
o increases. We cannot perform simulations For 0.9 due to

higher than the chosen site. A process of type Ill arises sinci'€ disappearance of bonds between particles along the sur-
particlesC always diffuse to the local minimum on the sur- face. In order to be sure that such decrease in the surface

face and maybe this site is located at the edge of the area $fidth does not depend on the system size, we performed
local diffusion. simulations up td_=600. The results are shown in Fig. 3,

Finally, the surface growth processes of the particles onvhich reveals clearly the behavior of the surface width as the

the aggregation might be considered as a kind of percolatiof™me increases. The figure also shows 0.8 a small

of the particleg16]. The deposition of particle& introduces ~ Scillation in the surface width which disappears for long
connective bonds for the incoming particlasand C, while  times andw(t) changes a#’. It should be noted that in the
the deposited particl€ forbids both particlesA andC to ~ case ofP>0, up to the limit of our calculations in time, we

sites are not entirely covered by the inactive particle pletely covered with inactive particles and stops growing al-
together. We conjecture that this is due to the presence of the

active particleA which allow the incoming particles to stick
laterally or over them. In addition, due to diffusion, particles
We performed simulations for this model on a square lat-of type A are either left uncovered or their sides are free. In
tice with d=3. The aggregation occurs in thedirection  Fig. 4, we plot the saturated surface width versus the prob-
with boundary conditions in th& andY directions. Statisti- ability for a system sizé&. =300. We see that the saturated
cal average is obtained over 500 independent simulations faurface width varying with the probabilit shows a non-

Ill. RESULTS
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shows how we obtained the exponentsind 8. The calcu-
lated exponents aréa) a=0.35+0.007 and(b) 8=0.19
+0.01 forP=0.40.

The results found above point clearly to a change in the
morphological structure of the surface Bsncreases. It is
obvious from the behavior of the surface width and the val-
ues of the exponent andg that for P= 0, the morphology is
similar to that of the BD model5]. Such behavior is
changed as the value Bfincreases. The results suggest that
surface diffusion will not be the only process that controls
the growth. In fact, the existence of two different types of
particles allows overhanging. Also, the development of clus-
ters of particlesC on the surface leads to a nonlocal growth.
Therefore, diffusive particles tend to reconstruct the surface
and suppress the effect of the nonlocality. However, diffu-
sion cannot entirely remove the overhanging and the exis-
tence of voids. This means that the te¥fh does not man-
age exclusively to suppress the nonlinear teW)? and the
transition will not be from Kardar-Parisi-Zhang universality
to that of Edwards and Wilkinson. The result of the compe-
tition between both terms influences the surface width to
grow asW(t)~t# even when the probability of being a dif-
fusive particleC is high. Alternatively, it means that in ad-
dition to surface diffusion, overhanging processes and for-
mation of voids occur. This led us to investigate the
compactness of the bulk. Figure 7 shows the probability ver-
sus the density of the aggregate: N/(h)L? which is mea-

FIG. 8. Cross sectional view of the final part of the aggregate forsured relative to the density of the usual BD model, whére

(@) P=0.3 and(b) P=0.75.

monotonic relationship, that iV(t= ) first decreases and
then increases as the probabil®yincreases, with a mini-
mum around®=0.6. We have plotted the exponentand 3
as a function of the probabilit? in Fig. 5. We find thatx
changes linearly upon increasing probability #0.6. It
decreases rapidly unti?= 0.8, after that it fluctuates around
a fixed value as shown in Fig(&. Figure b) reveals the
same feature for the expone@itwhere it decreases linearly
as a function of the probability fd?P<0.6 and then suffers a
rapid decrease until it becomes 0.1 fB=0.9. Figure 6

is the number of columns of the whole aggregdle,is the
average height, and? is the system size. It is obvious from
this figure that the density of the bulk decreasesPa®-
creases. This reflects clearly the occurrence of the overhang-
ing process during the growth which increases Rasn-
creases. Figure 8 reveals the constitution of empty spaces
under the surface which expand as the valué®afses. In

fact, as shown in previous work43—15, overhanging en-
larges the local gradient of the surface and enhances the pro-
cess by which particles stick perpendicularly to the local gra-
dient, thus increasing the nonlinear growth. Furthermore, the
presence of inactive particles over the surface induces the
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FIG. 10. View of the surface from the top as density plots for column hei¢#tsit log, t=2, (b) at log, t=3, (c) at log, t=3.7, and(d)
at log, t=8.

constitution of wide and deep grooves on the surface leadinface reconstruction in (21) dimensions.

to the flux of particles to be captured by some sites. Thus, the We return to the strange behavior in the kinetics that we
surface width grows with time, having a large value®f mentioned previously. It is clear from Figs. 2 and 3 that there
However, in the present case, overhanging and nonlocalitis a dip in the surface width as well as an oscillation as it
are not the governing processes since at the same time theraries with time. We argue that this behavior is due to the
is surface diffusion. The latter diminishes the increase of theompetition between overhanging and surface reconstruction
surface gradient originated by overhanging although it doegrocesses. In Fig. 9 we plot the average velocity as a func-
not completely overcome the creation of vacancies under thion of time. It is seen from this figure that for small values
surface. Also, diffusive particles remove the effect of nonlo-of P the average velocity decreases with time until it finally
cality when they move over the surface to the local mini-reaches a constant value. F8&0.75 a change in this be-
mum. So, the surface width finally grows with a certain havior starts to occur. There exists a decrease for very small
value of 8, which is neither high nor zero, and it does not values oft, we omit it since it is considered a transi¢si,

vary logarithmically witht andL as in the models with sur- then the average velocity increases, stabilizes for a short
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while, and then decreases until it reaches a constant valugespect to overhanging but not to void production. Conse-
This first increase suggests that at such time the growth iquently, the interface is driven to grow with small value of
dominated by overhanging and nonlocality which leads to @he growth exponent but with higher velocity and early satu-
rapid increase in surface width and to an early saturationration.
Then, diffusion becomes relevant and more effective in play-
ing its role. However, over some period of time there exists IV. CONCLUSION
a struggle between overhanging and nonlocality, and diffu-
sion which causes this oscillation of the surface width. Fi- We have proposed a BD model for two species where a
nally, a balance between different processes occurs and tlseirface diffusion process is introduced. We have studied the
surface width grows a#/(t) ~t#. This argument is sustained kinetics and morphology of the surface growth for different
by Fig. 10, which shows the topography of the surface as arobabilities of the species. We found that upon increasing
density plot of column heights at different stages of growththe probability P, the surface width reduces and saturates
(white for the highest and dark for the lowgsEigure 1@a) faster untilP=0.6. After this value the surface width in-
shows a large variation between column heights which isreases and saturates earlier with time. The measured values
attributed to the increment in the local surface gradient as af the exponents and 8 change also for different values of
result of overhanging. The step slopes on the surface due #®. However, as the diffusion process over the surface be-
nonlocality can also be seen. To this moment surface diffueomes dominant, the values of the exponents do not tend to
sion has not produced a great effect to reduce such a funthe values of the Edwards-Wilkinson universality class, in
tion. This produces a fast growth rate. As time increasesgontrast to the work of Pelligrini and Julligi0,11. They
surface diffusion takes over and the grooves disappear insed a ballistic model for two kinds of particles when both of
view of the reconstruction. Figures () and 1@c) show this  them are active. Their model stands between a plain ballistic
behavior while Fig. 1@) shows the surface at very large model and a full surface reconstruction model and they
time when the surface becomes rough but without large flucfound a change from the Kardar-Parisi-Zhang universality to
tuations in height as is predicted from the small valug8of Edwards-Wilkinson universality. We attribute the difference
It is shown from Fig. 9 that the average velocity of the in our case to the behavior of the two types of particles
interface at saturation increases wikRh WhenP increases, which allow overhanging to endure. Furthermore, the inac-
more voids are created under the surfemee Fig. 8 which  tive particles form clusters over the surface which promote
raises the interface velocif$]. Also, overhanging magnifies the nonlocal growth. Overhanging and nonlocality try to en-
the lateral spreading of the surfafEs,17], which expands hance the surface gradient and height fluctuations, which, at
the lateral correlation length, reaching the valud.dhster; the same time, are eliminated by diffusion.
hence the surface width saturates earlier. However,Pfor

>0.6, the _su_rface vyidth saturates ea_rlier in time wifch higher ACKNOWLEDGMENTS
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