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Growth kinetics and morphology of a ballistic deposition model that incorporates surface
diffusion for two species
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We introduce a ballistic deposition model for two kinds of particles~active and inactive! in (211) dimen-
sions upon introducing surface diffusion for the inactive particles. A morphological structural transition is
found as the probability of being the inactive particle increases. This transition is well defined by the change
in the behavior of the surface width when it is plotted as a function of time and probability. The exponentsa
and b calculated for different values of probability show the same behavior. The presence of both types of
particles gives rise to three different processes that control the growing surface: overhanging, nonlocal growth,
and diffusion. It finally leads to a morphological structural transition where the universality changes away from
that of Kardar, Parisi, and Zhang, in (211) dimensions, but not into that of Edwards and Wilkinson.
@S1063-651X~99!05607-X#

PACS number~s!: 05.40.2a, 05.70.Ln, 68.10.Jy, 68.35.Ct
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I. INTRODUCTION

The growth of surfaces and interfaces has recently
tracted great interest motivated by technological appli
tions. Most rough surfaces are formed under conditions
are far from equilibrium. Therefore, the study of such ph
nomena has a relevant importance in understanding none
librium statistical mechanics at the fundamental lev
Simple models have played a major role in this understa
ing by studying two important aspects, kinetics and morph
ogy. Kinetics helps to understand how surfaces evolve w
time while morphology provides a clear interpretation of t
growth kinetics@1–3#.

It is well known that a stochastically growing surface e
hibits scaling behavior and evolves to a steady state with
a characteristic time or length scale. Therefore, starting w
an initially flat substrate, defining the surface widthW(L,t)
by

W2~L,t !5
1

Ld21 (
r

@h~r ,t !2h~ t !#2, ~1!

whereL is the system size,h(r ,t) is the height of the surface
at positionr and timet, h(t) is the average height at timet,
and d21 is the substrate dimension, the scaling law@4# is
given by

W~L,t !5La f ~ t/La/b!. ~2!

The roughness exponenta and the growth exponentb char-
acterize the dynamical scaling behavior. The functionf (x)
scales asf (x)5xb for x!1 and f (x)5const forx@1. This
scaling behavior has been studied in various systems
models and has been argued to be universal@1–3,5#.

Among the models used to represent the growth of ro
surfaces, a well-studied example is the ballistic deposit
~BD! model. Here, particles rain down vertically onto
PRE 601063-651X/99/60~2!/1262~7!/$15.00
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(d21)-dimensional substrate and aggregate upon first c
tact @6#, giving rise to a rather interesting structure: the s
face is a self-affine fractal although the bulk, which is fille
of voids inside, is compact@3#. One of the successful theo
retical approaches to describe the BD model is that
Kardar-Parisi-Zhang~KPZ! equation@7#,

]h

]t
5n¹2h1

l

2
~“h!21h~r ,t !, ~3!

which is a nonlinear equation for the local growth of th
profile h(r ,t) of a moving interface about a
(d21)-dimensional flat substrate. However, although
BD model captures the essential features of processes
as vapor deposition, it does not provide an adequate re
sentation of diffusion on the surface. Such processes ca
found in growth where the newly arriving particle diffuses
a local minimum along the surface of the deposited mater
Surface diffusion leads to surface relaxation which tends
smooth the surface@1#. Therefore, when a surface diffusio
process is introduced, the linear term¹2h representing dif-
fusion will compete with the nonlinear term (“h)2, which
symbolizes the lateral sedimentation in the KPZ equation.
diffusion becomes the dominant process, the linear term w
and the universality will be changed@8# to the Edwards-
Wilkinson ~EW! universality@9#, which is described by the
equation

]h

]t
5n¹2h1h~r ,t !. ~4!

In this case voids are no longer formed inside the bulk a
result of the reconstruction trend during the growth@1#. Also
in this case for (211)-dimensional growth the exponen
a5b50 due to the logarithmic variation of the surfac
width with both time and system size, respectively.

Most previous studies have dealt with the surface grow
of one type of particles@1–3,5#. Generally, in the growth of
1262 © 1999 The American Physical Society



fe
in
fo
of
u

wo
ve
ich
os
f

n,

n
r

o

ra
in
bo
cie
m
wt
t

f

s
n

r
o
li
o

l a
rs

if-
ocal
ss

el

the
. III,
dis-

es,

ar

t
e r-

PRE 60 1263GROWTH KINETICS AND MORPHOLOGY OF A . . .
real materials one should take into consideration that dif
ent kinds of particles are deposited. Thus, in the grow
system, there may exist different kinds of interactions
different particles, which in turn yields a different kinetics
growth associated with a change in the morphological str
ture of the aggregate. Pelligrini and Jullien~PJ! @10,11# de-
scribed a surface growth according to a model with t
kinds of particles, sticky and sliding, where both are acti
This model interpolates between a diffusive model wh
incorporates surface diffusion and the usual ballistic dep
tion model. They used a parameterc to control the process o
diffusion on the surface. Whenc50 their model is similar to
that of Family@12#, i.e., a model with surface reconstructio
while, when c51, it is equivalent to the plain ballistic
model. However, they do not present the kinetic study a
how the surface evolves with time to a steady state. In p
vious reports@13–15#, we have used a BD model for tw
kinds of particles~active and inactive! but without including
diffusion on the surface and found a morphological structu
transition as the probability of being an inactive particle
creases. Such transition is attributed to the presence of
types of particles and the tendency to form more vacan
inside the bulk of the aggregate where overhanging beco
dominant. At the same time there exists a nonlocal gro
due to the formation of particleC clusters on the surface tha
do not allow other particles to stick over them.

In this work, we present a BD model for two kinds o
particles; one of them is active with probability 12P and the
other inactive with probabilityP, with a surface diffusion
towards a local minimum for the inactive particles. We u
the probabilityP as a continuously tunable parameter to co
trol the system. We depict the growth kinetics in (211)
dimensions as well as the morphological structure in orde
interpret the results which have been obtained. We will sh
that such diffusion processes will not change the universa
class from KPZ to EW. The appearance of different types
particles may strengthen the lateral sedimentation which
turn provokes formation of voids under the surface as wel
nonlocal growth by virtue of the constitution of inert cluste

FIG. 1. A cross sectional piece of the aggregate. White squ
stand for particlesA and dark squares symbolize particlesC. ~a!
The empty circles denote the deposited particles of typeA. The
deposition is indicated by the arrows.~b! The full circles represen
particles of typeC. The deposition is indicated by arrows. Th
process of diffusion is represented by fallen particles 5 and 6.
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of particlesC on the surface: a competition between the d
fusion process on the surface and overhanging and nonl
growth may happen. Although the diffusion may suppre
the effect of nonlocal growth, it will not completely canc
that of overhanging. Therefore, the Laplacian term¹2h will
not overcome totally the nonlinear term (“h)2 in Eq. ~3!,
which will not reduce to Eq.~2!.

The presentation of this paper is as follows. In Sec. II,
model and the physical motivations are presented. In Sec
the dynamical scaling behavior and the morphology are
cussed. Finally, a conclusion is given in the last section.

II. DEPOSITION MODEL

We consider a model composed of two kinds of particl
A and C, which fall on a square substrate of sizeL2, with
probabilities 12P and P, respectively. ParticleA is active,

es

FIG. 2. Log-log plot of the surface width versus time for diffe
ent values ofP at fixed sizeL5200.

FIG. 3. Surface width as function of time forP.0.8 when
L5600.
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while particleC is inactive; the meaning of active and ina
tive will become clear after the description of the proces

The model we propose is appropriate to describe chem
reactions which take place on the growing surface of ma
rials. For instance, it models the reaction processA1B5C
where particleA and particleB are active. Once particleA is
touched by particleB, the combination produces a productC
which is no longer active. The particleA is chosen with a
probability 12P, and the particleB with P. That is, the
reactantC is produced with the probabilityP when P is
small. Thus, in this system, some of the surface sites c
tinue to react while some sites do not. It also represents
surface growth of a material with low concentration of im
purities. These impurities are represented by particleC
which has fewer active bonds than particleA. Further, it
describes the deposition of two kinds of particles~one heavy
and one light! with different attractive forces.

The growth process, which consists of particles falli
randomly straight down one at a time onto a growing s
face, is as follows: at first a column is selected at random
then a particleA ~or particleC! is deposited on the surface o
the aggregate with a probability 12P ~or P!. A cross section
of the aggregate is shown in Figs. 1~a! and 1~b!. The white
squares represent the aggregated particles of typeA and dark
squares represent those of typeC. Circles, which account for
both typesA ~empty! andC ~full !, denote the incoming par
ticles. The path of the fallen particle is shown by the arrow
The deposition of particles of typeA occurs according to the
following processes depicted in Fig. 1~a!: particle A will
stick to the first particleA that it meets, either at the top o
the chosen column~particles 4 and 5! or sideways~particles
2, 3, and 6!; on the other hand, if no particleA is found the
incoming particle will be discarded~particles 1 and 7!. When
the incoming particle is of typeC @process shown in Fig
1~b!#, it does not stick to the top of the chosen column if t
latter is higher than the neighboring columns: it diffuses i
meets a particleA ~particle 5! or it is discarded if it finds a
particleC ~particle 7!; on the other hand, if the chosen co
umn is lower than its neighbors and the highest neigh

FIG. 4. Saturated surface width versus the probability wh
L5300. The connected lines are drawn for convenience.
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contains particleA, the particle will diffuse if there is at leas
one neighboring column lower than the chosen one~particles
6! or it will diffuse downward~particle 2!; when all the sur-
rounding columns are higher than the chosen one, the inc
ing particle will stick on top of it if it finds a particleA either
at the top~particle 4! or sideways~particles 3!, otherwise the
particle will be discarded~particles 1 and 7!. Therefore, the
only process of deposition of particles over inactive on
~type C! happens when through lateral sedimentation~fallen
particle 3! or diffusion ~fallen particle 5! they stick to a par-
ticle A. Otherwise, the particle should be discarded. Not
that a process of type I, in Fig. 1~a!, where a particleA has
deposited on top of aC, can happen because in (211) di-
mensions there are four neighbors and the particle adher
a side of any of those neighbors. Also a process of type
occurs due to overhanging to any one of the four neighb

n

FIG. 5. Probability versus~a! the exponenta and~b! the expo-
nent b. The lines connecting points in each curve are drawn
convenience.
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higher than the chosen site. A process of type III arises s
particlesC always diffuse to the local minimum on the su
face and maybe this site is located at the edge of the are
local diffusion.

Finally, the surface growth processes of the particles
the aggregation might be considered as a kind of percola
of the particles@16#. The deposition of particlesA introduces
connective bonds for the incoming particlesA andC, while
the deposited particleC forbids both particlesA and C to
stick to it. The surface keeps growing as long as the surf
sites are not entirely covered by the inactive particleC.

III. RESULTS

We performed simulations for this model on a square
tice with d53. The aggregation occurs in theZ direction
with boundary conditions in theX andY directions. Statisti-
cal average is obtained over 500 independent simulations

FIG. 6. ~a! Log-log plot of the lattice size and the saturat
surface width whenP50.4; the calculated exponent isa50.35
60.007.~b! Log-log plot of the surface width versus time for di
ferent sizes whenP50.4; the calculated exponent isb50.19
60.01.
ce
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each parameter. All simulations have been carried out
system sizeL.100 to go beyond the limit of size depen
dence.

Figure 2 shows a log-log plot of the surface widthW as a
function of timet ~number of deposited particles! for differ-
ent values of the deposition probabilityP and fixed system
sizeL5200. It is seen from this figure that the surface wid
increases fast and finally saturates to a fixed value after
periencing a slowdown. ForP50 the curve represents th
usual BD model for only one kind of particles@13,15#. The
scaling result for the exponentb is the same as for the BD
model, that is,b50.23860.005@5#. For values ofPÞ0, the
surface width decreases as the probability increases and
saturation state is reached early. However, forP.0.6, the
surface width increases again and the system saturates fa
It also appears that forP>0.75 there is a reduction in th
surface width which increases in depth as the probab
increases. We cannot perform simulations forP.0.9 due to
the disappearance of bonds between particles along the
face. In order to be sure that such decrease in the sur
width does not depend on the system size, we perform
simulations up toL5600. The results are shown in Fig. 3
which reveals clearly the behavior of the surface width as
time increases. The figure also shows forP.0.8 a small
oscillation in the surface width which disappears for lo
times andW(t) changes astb. It should be noted that in the
case ofP.0, up to the limit of our calculations in time, w
have not found a steady state where the surface finishes c
pletely covered with inactive particles and stops growing
together. We conjecture that this is due to the presence o
active particlesA which allow the incoming particles to stic
laterally or over them. In addition, due to diffusion, particl
of type A are either left uncovered or their sides are free.
Fig. 4, we plot the saturated surface width versus the pr
ability for a system sizeL5300. We see that the saturate
surface width varying with the probabilityP shows a non-

FIG. 7. Bulk density measured relative to that of BD versus
probability. The lines between points are drawn for convenienc
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monotonic relationship, that is,W(t5`) first decreases an
then increases as the probabilityP increases, with a mini-
mum aroundP50.6. We have plotted the exponentsa andb
as a function of the probabilityP in Fig. 5. We find thata
changes linearly upon increasing probability forP<0.6. It
decreases rapidly untilP50.8, after that it fluctuates aroun
a fixed value as shown in Fig. 5~a!. Figure 5~b! reveals the
same feature for the exponentb where it decreases linearl
as a function of the probability forP<0.6 and then suffers a
rapid decrease until it becomes 0.1 forP50.9. Figure 6

FIG. 8. Cross sectional view of the final part of the aggregate
~a! P50.3 and~b! P50.75.
shows how we obtained the exponentsa andb. The calcu-
lated exponents are~a! a50.3560.007 and~b! b50.19
60.01 for P50.40.

The results found above point clearly to a change in
morphological structure of the surface asP increases. It is
obvious from the behavior of the surface width and the v
ues of the exponenta andb that forP50, the morphology is
similar to that of the BD model@5#. Such behavior is
changed as the value ofP increases. The results suggest th
surface diffusion will not be the only process that contro
the growth. In fact, the existence of two different types
particles allows overhanging. Also, the development of cl
ters of particlesC on the surface leads to a nonlocal growt
Therefore, diffusive particles tend to reconstruct the surf
and suppress the effect of the nonlocality. However, dif
sion cannot entirely remove the overhanging and the e
tence of voids. This means that the term¹2h does not man-
age exclusively to suppress the nonlinear term (“h)2 and the
transition will not be from Kardar-Parisi-Zhang universali
to that of Edwards and Wilkinson. The result of the comp
tition between both terms influences the surface width
grow asW(t);tb even when the probability of being a dif
fusive particleC is high. Alternatively, it means that in ad
dition to surface diffusion, overhanging processes and
mation of voids occur. This led us to investigate t
compactness of the bulk. Figure 7 shows the probability v
sus the density of the aggregater5N/^h&L2 which is mea-
sured relative to the density of the usual BD model, whereN
is the number of columns of the whole aggregate,^h& is the
average height, andL2 is the system size. It is obvious from
this figure that the density of the bulk decreases asP in-
creases. This reflects clearly the occurrence of the overh
ing process during the growth which increases asP in-
creases. Figure 8 reveals the constitution of empty spa
under the surface which expand as the value ofP rises. In
fact, as shown in previous works@13–15#, overhanging en-
larges the local gradient of the surface and enhances the
cess by which particles stick perpendicularly to the local g
dient, thus increasing the nonlinear growth. Furthermore,
presence of inactive particles over the surface induces

r

FIG. 9. Average velocity as a function of time for differen
values ofP.
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FIG. 10. View of the surface from the top as density plots for column heights.~a! at log2 t52, ~b! at log2 t53, ~c! at log2 t53.7, and~d!
at log2 t58.
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constitution of wide and deep grooves on the surface lead
to the flux of particles to be captured by some sites. Thus,
surface width grows with time, having a large value ofb.
However, in the present case, overhanging and nonloc
are not the governing processes since at the same time
is surface diffusion. The latter diminishes the increase of
surface gradient originated by overhanging although it d
not completely overcome the creation of vacancies under
surface. Also, diffusive particles remove the effect of non
cality when they move over the surface to the local mi
mum. So, the surface width finally grows with a certa
value of b, which is neither high nor zero, and it does n
vary logarithmically witht andL as in the models with sur
g
e

ty
ere
e
s
e

-
-

face reconstruction in (211) dimensions.
We return to the strange behavior in the kinetics that

mentioned previously. It is clear from Figs. 2 and 3 that th
is a dip in the surface width as well as an oscillation as
varies with time. We argue that this behavior is due to
competition between overhanging and surface reconstruc
processes. In Fig. 9 we plot the average velocity as a fu
tion of time. It is seen from this figure that for small value
of P the average velocity decreases with time until it fina
reaches a constant value. ForP>0.75 a change in this be
havior starts to occur. There exists a decrease for very s
values oft, we omit it since it is considered a transient@5#,
then the average velocity increases, stabilizes for a s
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while, and then decreases until it reaches a constant va
This first increase suggests that at such time the growt
dominated by overhanging and nonlocality which leads t
rapid increase in surface width and to an early saturat
Then, diffusion becomes relevant and more effective in pl
ing its role. However, over some period of time there exi
a struggle between overhanging and nonlocality, and di
sion which causes this oscillation of the surface width.
nally, a balance between different processes occurs and
surface width grows asW(t);tb. This argument is sustaine
by Fig. 10, which shows the topography of the surface a
density plot of column heights at different stages of grow
~white for the highest and dark for the lowest!. Figure 10~a!
shows a large variation between column heights which
attributed to the increment in the local surface gradient a
result of overhanging. The step slopes on the surface du
nonlocality can also be seen. To this moment surface di
sion has not produced a great effect to reduce such a f
tion. This produces a fast growth rate. As time increas
surface diffusion takes over and the grooves disappea
view of the reconstruction. Figures 10~b! and 10~c! show this
behavior while Fig. 10~d! shows the surface at very larg
time when the surface becomes rough but without large fl
tuations in height as is predicted from the small value ofb.

It is shown from Fig. 9 that the average velocity of th
interface at saturation increases withP. When P increases,
more voids are created under the surface~see Fig. 8!, which
raises the interface velocity@5#. Also, overhanging magnifie
the lateral spreading of the surface@15,17#, which expands
the lateral correlation length, reaching the value ofL faster;
hence the surface width saturates earlier. However, foP
.0.6, the surface width saturates earlier in time with hig
values. This is ascribed to the evolution of more voids at
early stage in addition to the nonlocality~see Fig. 10! where
the interface is driven to grow with high velocity toward
saturation at a fast rate@14,15#. Nevertheless, when surfac
diffusion becomes important, it overcomes the conseque
of nonlocality and reduces the local surface gradient w
II
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respect to overhanging but not to void production. Con
quently, the interface is driven to grow with small value
the growth exponent but with higher velocity and early sa
ration.

IV. CONCLUSION

We have proposed a BD model for two species wher
surface diffusion process is introduced. We have studied
kinetics and morphology of the surface growth for differe
probabilities of the species. We found that upon increas
the probabilityP, the surface width reduces and satura
faster until P50.6. After this value the surface width in
creases and saturates earlier with time. The measured va
of the exponentsa andb change also for different values o
P. However, as the diffusion process over the surface
comes dominant, the values of the exponents do not ten
the values of the Edwards-Wilkinson universality class,
contrast to the work of Pelligrini and Jullien@10,11#. They
used a ballistic model for two kinds of particles when both
them are active. Their model stands between a plain balli
model and a full surface reconstruction model and th
found a change from the Kardar-Parisi-Zhang universality
Edwards-Wilkinson universality. We attribute the differen
in our case to the behavior of the two types of partic
which allow overhanging to endure. Furthermore, the in
tive particles form clusters over the surface which prom
the nonlocal growth. Overhanging and nonlocality try to e
hance the surface gradient and height fluctuations, which
the same time, are eliminated by diffusion.
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