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Abstract 

The kinetics of surface growth and its morphological structure have been studied for a ballistic deposition-like model with two 
kinds of particles (A and C) upon extending the interaction between particles to next-nearest-neighbours. The dynamic scaling 
behaviour of the surface width has been obtained for different values of the deposition probability P for particle C and system sizes. 
A morphological structural transition has been found as the probability increases. This transition is well defined both by the scaling 
of the saturation value of the surface width and the velocity of growth. It has been found that the extracted values for the roughness 
and growth exponents, for different values of P, do not obey the scaling law given by the Kardar Parisi Zhang equation. ~) 1997 
Elsevier Science B.V. 
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1. Introduction by 

Recently, the growth and formation of surfaces 
and interfaces have attracted great interest due to 
their importance in material sciences and the rele- 
vance in understanding nonequilibrium statistical 
mechanics [1,2]. It is well known that a stochasti- 
cally growing surface exhibits scaling behaviour 
and evolves to a steady state without a characteris- 
tic time or length scale. This has led to the develop- 
ment of the dynamical scaling approach proposed 
by Family and Viscek [3]. Starting with an initially 
flat substrate, defining the surface width W(L, t) 
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1 
W2(L, t )= _ 7 1  ~ [h(r, t ) -h ( t ) ]  2 (1) 

L" * 7 

where L is the system size, h(r, t) is the height of 
the surface at position r and time t and h(t) is the 
average of the surface height, the scaling law is 
given by 

W(L, t) = Uf(t /L:) .  (2) 

The dynamical scaling behaviour is characterized 
by the roughness exponent ~ and the dynamical 
exponent z, with growth exponent fl=~/z. The 
function f (x)  scales asJ~x)= x ~ for x << 1 and J ( x ) =  
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constant for x>> 1. This scaling behaviour has been 
studied in a wide variety of models and experi- 
ments [4] and has been argued to be universal 
[1,2]. One successful theoretical approach is the 
Kardar-Parisi Zhang (KPZ)  approach [5] which 
is based on Edwards and Wilkinson's theory [6]. 
The KPZ equation is a nonlinear Langevin equa- 
tion 

3h 2 
- -  = v V Z h  + - (Vh) 2 + r/(r, t). (3) 
~t 2 

In ( 1 + 1 )-dimensions, i.e. d=  2, Eq. (3) can be 
solved analytically giving ~ = 1/2 and [] = 1/3. These 
results are in good agreement with the results 
obtained from the simulation of ballistic deposition 
and Eden models [5,7]. However, for d > 2  there 
is still disagreement over the values of the expo- 
nents as well as the universalities of the various 
surface growth models [8,9]. In addition, dynamic 
renormalization group analysis indicated the possi- 
bility of a nonequilibrium roughening transition 
from the weak-coupling to a strong-coupling 
regime for d>dc =2 .  It has also been suggested 
that anomalous roughening behaviour may arise 
at the transition. Several authors have tackled the 
problem of growth models for various dimensions 
[10 16] and it has been found that there is a phase 
transition which is considered as a nonequilibrium 
analogue of the roughening transition. However, 
it is still important to know whether the observed 
roughening transition or the morphological struc- 
tural transition will appear in general. The study 
of discrete models may provide new insight into 
the dynamics of the surface growth for d>2 .  

Among the growth models which give rough 
surfaces, a well-studied example is the ballistic 
deposition model [17]. Here particles rain down 
vertically onto a ( d -  1 )-dimensional substrate and 
aggregate upon first contact. Such a model gives 
rise to a rather interesting structure: the surface is 
a self-affine fractal [1,2] although the bulk is 
compact. All previous work, which has been car- 
ried out according to the model described above, 
concerned only the growth of one kind of particle 
[1,2,16]. In general the growth of real materials 
may contain different kinds of particles. Thus, 
in the growing system, there may exist different 

interactions for different particles and the grow- 
ing mechanism may also be different. In addition, 
in (2 + 1 )-dimensions, next-nearest-neighbour 
( N N N )  interactions have never been studied, even 
for one kind of particle. It has been reported 
before that upon changing the interaction to next- 
nearest-neighbours neither the exponents nor the 
universality class change [18]. Thus, we have car- 
ried out this study not only to understand the 
growth mechanism for the model with two kind 
of particles better, but also to extract the values 
of the exponents for the case when only one 
particle is used. 

Following our previous work [9,19,20], we 
report further results of a ballistic deposition-like 
model in (2+l)-dimensions  with NNN inter- 
actions. The kinetic growth of the deposition of 
two kinds of particles A and C with probabilities 
1 - P  and P ,  respectively, on the substrate is 
described using the probability as a continuous 
tunable parameter to control the system. The 
dynamical scaling behaviour of the surface growth 
through computer simulation is studied with vari- 
ous system sizes and probability P. It has been 
found that there is a phase transition around a 
probability Pc such that the scaling exponent [J 
increases above Pc. This corresponds to a change 
in the morphological structure of the system. 

2. Model 

As shown in Fig. l a, two kinds of particles, 
particle A (the active particle) and particle C, are 
deposited on a two-dimensional substrate, with 
probability 1 P and P, respectively. The particles 
are allowed to fall straight down randomly, one 
at a time, onto a growing surface. At first a column 
(or site) ( i , j )  is selected randomly and then a 
particle A or C is deposited onto the surface of the 
aggregate. The deposition occurs at the moment 
when the incoming particle first encounters a par- 
ticle A, whether it is on the top or on one of the 
neighbouring columns of the chosen site. For 
instance, if the dropping particle falls down along 
column ( i , j )  and it meets a particle A which is at 
the top of the column (i,j) or at the top of one of 
the eight neighbouring columns as shown in 



ILK EI-Nashar et al. / Sur/bce Science 391 (1997) 1 10 3 

0 
,I, 

(a) 

O O O 

I 
,I, I I IXl I I  I ~ l U  -~  I I I I 

F I  I 1 I I ~  I ~ - [ - I  
I I I ~  I H I -1~ - I -1  [ ~ - '  

i-l,j+l i,j+l i+l,j+l 

iii~:;:i k@:i F:ii!i::-.;;% ~i!t/~i~;~" ::::::::::::::::::::::: .::~/.;.' :~: 

i- l,j i,j i + l,j 

ili!f~ !i!li~!itiiii#~iii:; ::fNi~liiiilNiiiiii!li!l ....... ~:~:~,i~==~:, :: 

i-l,j-1 i,j-I i+l,j-1 
(b/ 

Fig. 1. (a) The  ballistic-like deposi t ion model  of  two kinds of  
particles. The  circles represent  the falling particles, the squares  
represent  particles A and  the squares  with a cross denote  par-  
ticles C. (b)  The  eight ne ighbours  for  the chosen site i , j .  

Fig. lb, this dropping particle sticks to this particle 
A and stops falling. That is, the deposition not 
only happens on the top of the chosen column, 
but also on the side of the nearest- and next- 
nearest-neighbouring columns. When the falling 
particle first meets a particle C on neighbouring 
columns, it may fall down until it meets a particle 
A or it reaches the top of the on-site column. This 
falling down of the incoming particles could 
happen only if the chosen site has a lower height 
than its neighbours and all its neighbours contain 
particles C above the height of the on-site column. 
Since the growth of any column in this case 
depends on eight neighbours and there are different 
interactions between particles, the deposition pro- 

cess is not easy to imagine from Fig. 1, which gives 
a simple side view of this model. 

The physical motivations of such a model are 
as follows: first, it describes chemical reactions 
which take place on the growing surface of materi- 
als. For example, we model the reaction process 
A + B = C where particles A and B are active. Once 
particle A is touched by particle B, the combination 
produces a product C which is no longer active. 
The particle A is chosen with a probability l - P ,  
and the particle B with P. That is, the reactant C 
is produced with the probability P when P is small. 
Thus, in this system, some of the surface sites 
continue to react while some sites do not. Second, 
it represents the surface growth of a material with 
low concentration of impurities. These impurities 
are represented by particle C which have less active 
bonds than particle A. Third, it describes the 
deposition of two kinds of particles (one heavy 
and one light) with different attractive forces. 
Finally, the surface growth processes of the par- 
ticles on the aggregate might be considered as a 
kind of percolation of the particles [21]. The 
deposition of particles A introduces connective 
bonds for the incoming particles A and C, while 
the deposited particle C forbids both particles A 
and C from sticking to it. The surface keeps 
growing as long as the surface sites are not entirely 
covered by the nonactive particle C. 

When P = 0  our model is reduced to the usual 
ballistic model with a single kind of particle. The 
ballistic model, with one kind of particle with next- 
nearest-neighbour interactions, has only been 
studied in ( 1 + 1 )-dimensions for a restricted solid- 
on-solid (RSOS) model [22]. When PC0 ,  the 
deposition process will be affected by the existence 
of the particle C, and competition will exist 
between both processes: downward diffusion and 
overhangs. For downward diffusion the chosen site 
has to be lower than its neighbours. If one of the 
neighbours is particle A, then the incoming particle 
will stick to it, thus overhanging. If they are all 
Cs, the particle will continue downwards until it 
finds a particle A on a neighbour or on the chosen 
site. Otherwise it is abandoned, thus simulating 
desorption. These processes, which come from the 
different interactions between particles, make the 
kinetics of the growing surface and the dynamical 
scaling behaviour quite different and may result in 
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different morphologic structures. For P =  1, the 
surface will become completely inert after depos- 
ition of one layer, i.e. the particles C will cover all 
the surface and no growth will occur. 

3. Simulation results 

The aggregation occurs in the Z-direction over 
a square substrate of side L. At the beginning, all 
sites are occupied by particles A for Z_< 0. Periodic 
boundary conditions are used in both the X- and 
Y-directions. The statistical average is obtained 
over 500 independent simulations for each 
parameter. 

Fig. 2 shows a log log plot of the surface width 
W as a function of time t, where t is measured as 
one Monte-Carlo step, for different values of the 
deposition probability P and fixed system size L = 
100 (Fig. 2(a)) and for different system sizes L and 
fixed probability P=0 .3  (Fig. 2(b)), respectively. 
As indicated in Fig. 2(a), the width of the surface 
first increases very fast and then experiences a 
slowing down, finally saturating to a fixed value. 
For P # 0 and small values of P, the surface width 
becomes smaller as the probability P increases and 
the saturation state is reached for smaller values 
of the width. However, for P>0 .5  the surface 
width increases again as the time increases and the 
system saturates faster. So, we define the prob- 
ability P=0 .5  as a transition probability Pc. 
Fig. 2(b) shows the surface width for different 
system sizes for P=0.3 .  The growth of the surface 
for short time is the same. With large values of L, 
the system takes a long time to reach saturation. 
From the scaling relation of the saturated surface 
width with system size, W ( t - o c ) ~ U ,  the rough- 
ness exponent is obtained for two different proba- 
bilities below and above Pc, ~=0.25_+0.03 and 
:(=0.32_+0.02 for P=0 .3  and 0.7, respectively. 
This gives two different values of the roughness 
with ~<~',  which may indicate that the surface 
for P<Pc is more jagged than that for P>P~. 
Also, we found that when P = 0 ,  the roughness 
exponent %=0.21 +0.03. 

The saturated surface width versus the prob- 
ability for fixed value of the system size is shown 
in Fig. 3. According to this figure the saturated 
width first decreases upon increasing the prob- 
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ability P<0 .5  and then increased with P >  0.5. The 
value of the probabilities of the minimal point is 
around 0.5, i.e. Pc~0.5.  

The exponent fi is plotted as a function of the 
probability P as shown in Fig. 4. It has been found 
that fi is almost unchanged with increasing P for 



H. K El-Nashar et al. ,; Surfiwe Science 391 (1997) 1-10 5 

4.0 I 

3 . 5  

H 
~: 3.0 

a.5 

\ 
\ \  

\ 
"s.\. / 

i 
2.0 H . . . . .  , . . . . . . .  . . . .  , . . . . . . .  

0.0 0.2 0.4 0.6 0.8 

P robab i l i ty  

Fig. 3. log 2 W(t= -£ ) versus P for system size L =  100: the solid 
line joining the calculated points is drawn for convenience. 

o.8 t 

O.6 ! i 

o.4~ 

0.2 __-e~ ~ i 

4 

0,0 ~ . . . . .  I . . . . .  ~ ' 1  I i . . . . . .  ~ I I I I U I  i I I 

0.0 0.2 0.4 0.6 0.8 

Probabi l i ty  

Fig. 4. The exponent fi against the probability P; the solid line 
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P < P c  and then increases rapidly after Pc but it 
does not reach the value of 1. The values of  fl for 
P<Pc and P = 0  are found to be around 0.2, which 
are different from [3=0.25 for the ballistic depos- 
ition model with nearest-neighbour interactions 
only [8]. Here the calculated error is smaller than 

the difference. Also, the values of  the exponents z. 
and fl do not obey the scaling law ~ + ~/fl = 2 either 
below or above Pc. This scaling law is characteristic 
of  standard KPZ theory and its extensions [5,7]. 

It is well known for the ballistic deposition 
model that the interface advances with time in a 
nonuniform way, i.e. the average interface velocity 
does not equal zero [8]. It is clear from Fig. 2 that 
a decrease exists and a rapid increase in the values 
of  the saturated surface widths for probabilities 
lower and higher than Pc, respectively. Also after 
Pc, the surface width grows very fast with time 
associated with a higher value of fi and saturation 
is reached in a short time. Therefore, the study 
of the interface velocity for different values of  
probabilities may introduce a way to elucidate this 
behaviour. 

Fig. 5 shows the calculated interface velocity 
versus time for different probabilities. It can be 
seen from this figure that the velocity decreases 
with time, then slightly increases and finally 
reaches a constant value for each value of the 
probability. For values of  P<0 .5 ,  the behaviour 
takes the same trend as the usual ballistic model 
but with different values in the final stage for each, 
while for P > 0 . 5  it changes drastically, especially 

5.6 t " P=0.20 P=0.00 

_ _ P=0.40 
= _ P = 0 , 5 0  

5.2 ~ __ __ P=0.62 
d _ P = 0 . 6 5  

_ _  P=O.70 

I 

4.1 

o.o 3.0 6.0 9.0 ,2.0 ~.o 

Loget 
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different values of P. 
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for P>0.65.  Fig. 6 shows the steady-state velocity 
versus time for different values of P. This figure 
supports the existence of the phase transition in 
kinetics which should arise due to a transition in 
the morphological structure. 

4. Morphological  structural transition 

We showed in the previous section that the 
dynamic scaling behaviour gives us an indication 
that as the probability of deposition of particle C 
increases, two different scaling regions exist sepa- 
rated by Pc=0.5.  This could be defined as a 
transition in the morphological structure and it is 
due to the interaction processes between different 
kinds of particles. For P >  Pc, the nonactive par- 
ticles C tend to connect themselves to form large 
clusters, which block the connection of the active 
clusters of particles A. 

Fig. 7 shows the shapes of the surface at P=0 .3  
and 0.7, which gives an indication that the surface 
is locally rough. Comparing Fig. 7(a) with 
Fig. 7(b), we see that the surface at P=0 .7  looks 
smoother than that at P=0 .3 ,  noting that the 

differences in height of both are the same. For 
P <  Pc the deposition of particles A occurs more 
frequently than that of particles C. Since the bond 
strength between particles A is big, they are con- 
nected together forming big clusters separated by 
very small islands of particles C. This may lead to 
rapid growth of the columns that contain particles 
A on their tops as well as their neighbours through 
the sideways sticking and a low growth of columns 
that contain particles C on the top or particles C 
on the neighbours. The process in this case may 
produce a rough surface with a sensible variation 
between its columns. For P > Pc, there will be more 
particles C than A on the top of the columns and 
on the neighbours. The incoming particle cannot 
move downwards to encounter a particle A unless 
the neighbours of the chosen site are covered by 
particles C. This must happen for all layers through 
which the incoming particle descends. Such a case 
has a small chance, as it is most probable that the 
incoming particle meets particle A in the second 
layer if it has not done so in the first. This may 
cause more overhanging which enhances the lateral 
spreading of the surface [23]. This mechanism 
leads to an increase in the lateral correlation length 
reaching the value of L fast, then the system 
saturates earlier in time. In fact, the effect of more 
overhangs is responsible for the increase of the 
interface velocity after Pc since it leads to the 
formation of voids under the surface, which in 
turn, increases the surface gradient. Therefore, the 
particles stick to the surface nonperpendicular to 
the local gradient which increases the nonlinearity 
in the growing surface. 

Fig. 8 shows the density p of the whole aggre- 
gated materials versus the probability P, where 
p = N//[TLI~ 11 and N is the number of particles. It 
is clear from this figure that upon increasing the 
probability P, the density of particles C increases 
and then decreases after P =  0.5 and the density of 
particles A decreases. So, the total density of the 
aggregated material decreases. This supports that 
there are more overhanging processes than down- 
ward diffusion of particles while the surface grows. 
That is, the density decreases due to the formation 
of big voids inside the bulk which in turn becomes 
less compact. 
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Fig. 7. The three-dimensional plots for the shapes of the surface with different probability P~: (a) P=0.3; (b) P=0.7. 
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Fig. 9 shows density plots of the surfaces. The 
white areas represent the highest columns and the 
dark areas represent the lowest. Variation in the 
shades of grey gives an indication of the fluctua- 
tions of the height. It is seen from Fig. 9 that the 
grey variation and the contrast between columns 
are sharper when P=0 .3  than when P=0.7 .  This 
reflects that the surface is going to be smoother 
for P >  Pc. According to this and to the extracted 
values for the exponent fi, a transition in the 
morphological structure occurs. Furthermore, in 
order to verify the above, the number of particles 
C, N c, on the surface is counted and plotted against 
the probability P as shown in Fig. 10. It is found 
that Nc has a linear relationship with the prob- 
ability P, having different slopes before and after 
the transition. 

All of the above discussions indicate the exis- 
tence of the morphological structural transition in 
the surface growth by ballistic-like deposition 
model. This transition corresponds to a change 
from an active to an inert state, which could be 
described by directed percolation theory. Evidence 
for this is the appearance of large clusters of 
particles C on the surface around Pc. For P<Pc ,  
the falling particles (A or C) connect to particles 
A easily. The surface grows continuously and a 

directed percolating cluster (particle A) extends 
over the whole system. For P >  Pc, a typical con- 
nected particles A cluster extends over a small 
distance, i.e. the cluster of connected particles C 
will extend over the entire system. As a result, this 
directed percolating process governs the growth of 
the surface microscopically, which makes the 
surface structures different from each other for the 
probability P below and above Pc- 

5. C o n c l u s i o n  

In our simulations, we have obtained various 
exponents fl and ~ for different probabilities. It 
has been found that the exponents do not satisfy 
the KPZ scaling law below and above Pc. This 
may be attributed to the facts that: (a) the inclusion 
of the next-nearest-neighbour interactions between 
particles enforces the nonlinearity in the growth 
processes: (b) upon increasing the probability P, 

more overhangs occur and wide vacancies (defects) 
in the bulk are formed. This may enhance the 
nonlinearity in the growth along these defect lines. 
Therefore, the continuum KPZ equation does not 
apply in this case. 

In conclusion, a ballistic-like surface growth 
model for deposition of two kinds of particles on 
a two-dimensional substrate with next-nearest- 
neighbour interactions has been proposed. The 
dynamic scaling behaviour of the surface width W 
for different values of the probability P and system 
sizes has been obtained. A phase transition of the 
morphological structures has been found as the 
probability P increases. This transition is defined 
by the exponent fi as a function of the probability 
P. The physical origin of the transition lies in the 
tendency of particles C to aggregate together to 
form inert clusters and to the different interaction 
processes between different particles. This results 
in the growth of the surface through a directed 
percolation process. The morphological structural 
transition could be interpreted as a transition from 
an active state to an inert state. Also the presence 
of particles C leads to void formation and accord- 
ingly a rapid increase in the lateral correlations. 
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This effect induces the growth rate to reach 
saturation at earlier times with higher speed. 
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