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The thermodynamic properties of a direct gap semiconducting system,
under high intensity optical pumping are studied. The strong electromag-
netic field of the pumping beam must have a frequency larger than the
band gap. A Bose condensation of electron—hole pairs of zero momentum
is found as the temperature goes to zero. This condensation persits even
when the finite wavevector of the pump is taken into account.

IT HAS been shown?! that high temperature super-
conductivity can be achieved in semiconducting sys-
tems with an inverted population of quasi particles.
Such a system can be obtained by optical pumping
on a direct gap semiconductor, with intensity high
enough to insure that the probability of creating an
electron—hole pair exceeds the recombination prob-
ability. For an electromagnetic wave whose frequency
w is larger than the band gap w,, the bottom of the
conduction band is filled with electrons and the top
of the valence band with holes up to an energy
(1/me + 1/mp) KE[2 = w — w,. The energy spec-
trum, Q(p), of the quasi particles in this system is
found to be?
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Equation (1) shows a gap, A, in this spectrum which
depends on the field, the matrix element of p
between the conduction and valence band and the
angle between the direction of the field and the mo-
mentum of the electron.? Electric and magnetic
properties of this system have been calculated by
several authors by means of a canonical transform-
ation.3+4
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In order to reveal possible phase transtions in
the system its thermodynamic properties must be
known. No calculation of this kind is available to
date. In the present work we undertake the calcu-
lation of the partition function for the aforemention-
ed system using a mathematical method proposed by
Eckmann and Guenin (EG) for solving fermion prob-
lems.® This method provides an extremely simple but
exact solution to our problem making the present
treatment superior to the previously used ones which
yield numerical solutions. OQur treatment predicts the
existence of a condensed phase of electron—hole
pairs, as T goes to zero, which persists even when the
finiteness of the wave vector of the pumping light is
taken into account.

We consider a two band semiconductor in an
electromagnetic field of vector potential

A = Ajcos(wt—q-r), A'q=0 3)

whose Hamiltonian, in the effective mass approxi-
mation, ignoring Coulomb interaction between elec-
trons and holes, is given by:
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here E£,(p) and E},(p) are the energy of electrons and
holes measured from the center of the band gap;
ap(b,) and a,(b-,) are the creation and annihilation
operators for electrons (holes), and A, , is the
electric dipole matrix element for the interband tran-
sition. Performing the unitary transformation

U(t) = exp —é-(;—t Y apa, + bfpb_p} , (%)
I
the Hamiltonian becomes
H = ; H, = ; ee(p)apa, + en(P)b:,b_,
+ X, q850 (o 1a) T A5,aP-(p +a)p s (6)
where €, and €, are given in equation (2).

First we consider the case ¢ = 0, and a real A,
for simplicity. Then we can write

exp [— 3 Hp/kr} = [lexp (= H, KT} (7)

therefore the EG method is easily applicable to the
problem. The vector basis, obtained by application
of the EG method, given by

Vpa = H.. . HA (8)
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where (. . . ) means average over the ground state, has
dimensionality four, and is

7)1:1

Uy = €.N, +€hNh + >\(S+ +S)

v3 = (e2— N)N, + (e — NV, + 21
+ Me, + e (ST +S) + 2(e e, + 2SS, (9)
Vs = AN(ee + ep)l — N%(e, + €)(NVe + Ny)

+ €3N, + €Ny, + 3(e. + ep e + AH)STS
+ (e + €)* + A2 (ST +S)
where N, =a*a, N, =b*p,5* =a*b* and S = ba
and we had dropped the index p for simplicity. The

fifth vector vs = { HHHH ) is found to be a linear
combination of the other four
Vs = 7\26eeh’01 + (Ge + eh)(eeeh - >\2)7)2
(10)
+ [N — €6, — (€0 + €4)*] 03 + 2(e, + €4)Vs

and the matrix Ly ;, defined by
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gives:®
r(-J 0 0 Neep -]
1 0 O (ee + €, e e, — AD)
Ly, = N ‘ Jan
0 1 0 No—€q€n —(€c +€,)
0 0 1 2(62 + Gh) _

whose eigenvalues wy,, are: €,, €, and (e, + €,)/2 +
V(ee +€,/2)? +2%. Then
4

exp(—Hp/kT) = Y upx, exp (— wy/kT)
k=1 (12)

where u;, are the eigenvectors of Ly, and x), is de-
4

fined by v, = kE_l MpXp . Straightforward application

of the EG method yields:®

z=gﬂm=
2I}exp {— lec(p) + €n(p)] 26T} - {ch ee(p)z—irih(?)
+ ch 'a]%:z} (13)

here o(p) = /A2 + (€. + €,)%4. The number of elec-
tron—hole pairs is given by the thermal average of
($*S)p, or

)0 )
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(S*S)p tends to half the number of electrons plus
holes® when T - 0, near the quasi-particle Fermi
surface, and we find pair condensation.

We turn now to the validity of this calculation
for finite g. In order to do so, we write the vector
potential A(g) = A(0) + [4(q) — A(0)], and calcu-
late the change in the thermodynamic potential £2.
This we do by using the Green’s function method.
We define the Green’s functions G,(x, x') =
— KTy ()e(x')) and F*(x, x") = (TYR W ).
If we write G, = G + G, F* = F*© 4 p+®
and keep first order terms in A(q) — A(0) we find”’
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where G and F* are the Green’s functions for
the unperturbed system. The change in the thermo-
dynamic potential turns out to be:

AQ = £aVT ¥ jdapi(Ao-p) {F*“”(p—q,
@n mc¢

Wy~ W) _F+(o)(P, Wn — w)—F+(0)(p: wWn)
x (G“”(p —q, w0 —w) _ GO, w0y —w) }

T (O

5

(16)

to estimate this expression for g - 0, we use
GO(p, w) and F*O(p, w) found by Elesin® (for
m, = my), and find

AQ =
°q e(p)

Vaw s e . pra_ep)
i L R o(p)[e(p) — o]

X{ 8w + ap —q)]

ep)—w—ap—q)+is
4 dw-ap—q)] }
e(p) —w +alp —q) =i

which goes to zero for g - 0.

We have succeeded in calculating the partition
function for a saturated semiconductor by a method
which is at the same simple and exact. We have found
a Bose condensation of pairs, near the Fermi surface
when T goes to zero, brought about by the inter-
action between electron—hole pairs via electromag-
netic fields. Work is under way to find out if there
exists a finite temperature T, > 0 at which this con-
densation occurs including many body effects and a
more realistic many band model. This condensation
should lead to important changes in some observable
quantities of which optical absorption and Raman
scattering are being considered. These extensions of
the present work will be published elsewhere.
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