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A spatial coherent and temporally chaotic state in globally coupled maps exists in the strong coupling
regime. After the coherence loses stability the whole system is attracted to a two-cluster dttvagtir,].
The number of elements in the clusters depends on the initial conditions, which are chosen at random. We find,
numerically, that the number of elements in the clusters obeys a power law decay near the onset of the
transition. The difference of the two clusters displays a temporal behavior characteristic of on-off intermit-
tency, although the distribution of the laminar phases shows a phase transition as a function of its length,
making it essentially different from the lattd51063-651X96)07809-9

PACS numbds): 05.45+b

The transition routes to chaos in low-dimensional nonlin-f(x) =ax(1—x), anda is the nonlinear parameteN is the
ear dynamical systems have been well understood. One d¢btal number of elements or system size.
them, the intermittency route, was classified into three types An important concept in GCM model is “clustering.”
by Pomeau and Mannevillgl]. The essential feature of in- This means that even when the interactions between all ele-
termittency is that a simple periodic orbit is replaced by aments are identical, the dynamics can break into different
chaotic attractor, where the chaotic behavior is randomly in¢lusters, each of which consists of fully synchronized ele-
terspersed with periodic behavior resembling that before thenents. After the system falls in an attractor, we say that the
transition, in an intermittent fashion. Recently, the statisticaklements andj belong to the same clustenif=x/,. There-
distribution of a different type of intermittency in some low- fore, the behavior of the whole system can be characterized
dimensional nonlinear dynamical systems, called “on-off’ py the number of clustens,, and the number of elements of
intermittency, has been obtained analyticdlB~10. This  each clusterf;,M,, ... ,M ) [15].
intermittency is characterized by a two-state nature. The ag the nonlinearity or coupling strength is varied, the sys-
“off” state, which is nearly constant, and remains so for yo exhibits successive phase transitions among coherent,
very long periods of time, is suddenly changed by random, e and turbulent phaséss]. We shall study the transi-

bursts, the “on” state, which departs quickly from and re- i from the coherent chaotic state to a two-cluster chaotic
turns quickly to the “off” state. A self-organized on-off spa- 4iractor in the strong coupling regime.

tiotemporal intermitt_ency has alsq been rgported in a system | the coherent chaotic region the system is homogeneous
of coupled maps via nearest-neighbors interacfibd]. In in space, i.e.x'=x/, Vi,j, and chaotic in time. Thus, it is
this paper we focus our attention on some transitions thaf} . acterized by only one cluster, i.e,=1, M;=N. The
take place in globally coupled chaotic systems. motion of each element is equivalent to that of the single
Globally coupled systems are ubiquitous in nature. They,qigtic map. The stability condition for this coherent state is

arise naturally in studies of Josephson junction arrays, mulg ot modulus of all eigenvalues of thex N stability matrix
timode laser, charge-density wave, oscillatory neuronal SYSy_m f/(x,)Jo™ has magnitude less thanne Here
n=1 n

tem, and so or12-14. As one of the simplest globally f’(xpn) is the derivative of thenth iteration of the logistic

coupled system, the globally coupled MERCM) has been map; m is taken as the periodic number or infinity for peri-
the subject of intensive research in recent years. Some rather

surprising and novel results, such as clustering, splay stat dlc_or qhaotlc motions, respectively, is aN XN constant
. . X o matrix given by

collective chaotic behavior, and violation of the law of large

numbers in the turbulent regime are revealed in the GCM

model[15-18. In this paper we will study the transition to €

intermittency in the GCM model, which takes place between l-et+ = —

the coherent and the ordered phases.

Z
2
Zl o

Specifically, we use the following form of GCM: € 1ot €
— —et— —
N
g @
X =(1-e)f(x)+—> f(xh), i=12,....N, 1
Ni=1 € € €
N N 1=e*R

wheren, i, and e are the discrete time step, the index of
elements, and the coupling coefficient, respectively. The
mapping function f(x) is taken as the logistic map The matrixJy is a circulant matrix, and can be written as
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FIG. 1. Space-time evolution of the systemNst200, a=4, (1)
ande=0.501.
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The eigenvalues al, are given by
0.2473 + i
Mo1=1, ;
Nt 0.2472 1 -
/~‘L0r:1_6+ _2 ei2ﬂ'(|’*l)j/NE]__e_,
! Nj=0
0.2471 1 i
r=23,...N. (4
Thus the eigenvalues of the stability matdxare 0247 L _.L?
m
02469 1 1 1 1 1 1 1 1 1
M= Hl f'(Xn), 0O 20 40 60 80 100 120 140 160 180 200
n= .
1
m . .
=(1—e€) f'(x)), r=2.3,...N. 5 FIG. 2. (a) The same as in Fig. 1 fm:Q.499.(b) The space
= ) nl:[1 (%n) ©) structure of the system after the X30°)th iterations of Eq.(1).

Two clusters are clearly observed.

The eigenvector corresponding to the eigenvalyés given

by (LWN)(L,1, ... ,1)". Thus, the amplification of a distur- state gfter a short tran_sient process, sincg 0. Generally
bance along this eigenvector does not destroy the coherencdP€aking, we are only interested in the parameters where the
Eigenvectors for the otheéd— 1 identical eigenvalues are not Pehavior of the single logistic map is chaotic,>0. We
uniform; the amplification along these eigenvectors destroy§@ve performed calculations for different valuesaohithin

the coherent phase. Therefore, the stability condition of thdhe chaotic region. The resultg that we shall describe hold for
coherent chaotic state is decided by #de-1 identical ei- @l of them, therefore, we fba=4 and N=200, where

B 1 e .
genvalues. Their corresponding Lyapunov exponents are Mo=In2, thus, we have.= 3. Figure 1 shows a space-time
evolution ate=0.501. The initial condition of each element

A=\ =In(1—€)+Ng, r=23,....N, (6) is randomly chosen in the uniform intervid,1] throughout
this paper. It is very clearly observed that all elements syn-
where \ is the Lyapunov exponent of the single logistic chronize after almost 1100 iterations. We make the figure
map. Therefore, the critical stability condition is given by according to the rule: ifx,(i) —x,(1)|>10"*4, then the cor-
A=0, i.e.,e,.=1—e 0. Whene is larger thane., all ele- responding pixel is black, otherwise, it stays white.
ments quickly evolve to the same moti¢the homogeneous When the coupling is slightly smaller than the critical
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FIG. 5. The relative distributiorP, of the laminar phases of
x!—x? plotted againstn (log-log plot in the large frame and

FIG. 3. The distribution of various, (log-log plottings for 1, |4 piot in the upper small framefor several thresholds at
€=0.499. The dashed line is the perfectl.11 power law decay.  ._q 499

value (0.5, the system suddenly evolves to a two-clusterg

attractor M;,Mp) [My+M;=N=200 after the transient 1 _ ), <100. we choose many random initial conditions,

process. F|fgure (@ shows a spr)]ace—tlme gvolutlor: al and iterate Eq(1) for each one, then found, numerically, that
€=0.499. After some iterations, the system is exactly sef,q istribution of variousv 1'S obeys an exact power law

down to a two-cluster chaotic attractovlg,M;)=(8,192).  yecay as the control parameter crosses the critical value from
The space structure after the Xa0P)th iterations is also 0\ e Figure 3 shows the distribution Mf, for e=0.499.

displayed in Fig. ). Two clusters are clearly observed. s yota) of 16 different random initial conditions to iterate

M.l andM, depend on the ghosen random initial conditions.Eq. (1) were computed to obtain this curve. Except for the
Since the sum oM,;and M, is always the same&00), only it several points, this distribution is a bonafide power law
one of the two numbers can be varied freely. Assuming th%lecay with an approximate exponentl.11.

ree variable to beM,;, with M;<M,, then we have

When the system falls in a two-cluster attractor, the dy-

0.2 — namics can be replaced by
0.15 - - : ) el , )
Xns1=(L=f ) + 52 MifOd), =12 (7)
0.1 Ni=1
0.05 Although the behavior of each cluster is chaotic, the differ-
o ence of the two clusterst—x?) shows some very interest-
;0 ing and complex features. Figure 4 shows a time evolution of
4 x1—x? for the same param_eter as thos_e of Fig. 2. It is easily
0.05 observed thatx!—x2 remains a long time near zero, and
o1k i suddenly departs from it and quickly returns after some ran-
' dom bursts. As the deviation fror, becomes large, more
015 L i and more random bursts frequently occur.
In order to better characterize the intermittent behavior,
02+ ] we have calculated numerically the statistical distribution of
the duration of the laminar phagé— x? shown in Fig. 5 for
025 | . several thresholds of the differenceat €=0.499. These

thresholds for the laminar phase are defined|®y—x?|
03 0 10100 20.00 3oloo 4oloo 5oloo eoloo 7oloo 80IOO 9c;001oooo <7, with 7 fa”ging from 10 to 10 °. For each threshold'a
n total of 2x 10° iterations of Eq(1) were computed to obtain
these curvesP,, represents the probability of the laminar
FIG. 4. The evolution of the difference of the two clusters after phase of lengtm, namely,P,=M, /M, whereM is the total
some transient process at 0.499. number of segments of the laminar phaek, the number of
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FIG. 6. B, vs €.~ € at ,=0.5. The diamonds are numerical
results. The slope of the dashed line is 2.

those of lengtm. The distribution has the following remark-
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parametere from the critical valuee.. Figure 6 shows the
relation of B8, and the coupling deviatiole.— €. It can be
best fitted by

B2=2(ec—€). ®

Actually, this statistical distribution should be independent
of the threshold chosen for the laminar phase. In order to get
the invariant distribution, we take smaller values of
(105 is enough. The invariant distribution can be approxi-
mately formulated as

e A" n<nq,

PnOC e72(ecfe)n,

(€)

n>ng,

where 8,~0.7 andng~15. Thus, the distribution of the
laminar phase described in this work shows a transition at
ns. Although this type of intermittency has similar charac-
teristics to those of the conventional on-off intermittency
(see Fig. 4, this transition does not exist in the latter, since
its distribution obeys an asymptotic power law near the on-
set, with exponent- 3.

In conclusion we have investigated the intermittency tran-
sition from a coherent chaotic state to a two-cluster chaotic
attractor in globally coupled systems. We have found a new
intermittency transition for globally coupled maps. We found

able property. For small segments of the laminar phasehat the numbers of elements in the clusters obey a power
(n<15) the distribution quickly tends to the same exponen{aw decay near the onset of the transition. We have seen that

tial law decay with an asymptotic exponent0.7 as the
thresholdr decreasetsee Fig. 5. We found numerically that

this type of intermittency is essentially different from the
types of intermittency known before, showing a phase tran-

this exponent is independent of the control parameters fagition as a function of the length of the laminar phase. The

small values ofn, while for large segments of the laminar
phase the distribution seems to depend on the threshold
the laminar phase. For large valuesmoit obeys an asymp-
totic power law decayseer=10"2). As the threshold de-

features of this type of intermittency are rather generic for
oflobally coupled chaotic systems and are independent of the
local mapping function, which we have taken as the logistic
map to illustrate the phenomenon. Both spatially global uni-

creases, this power law is gradually replaced by another onéorm coupling and chaotic motion of the individual elements

The new exponent-{ 8,) depends on the deviation of the

are of crucial importance.
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