
Coherent-ordered transition in chaotic globally coupled maps

Fagen Xie1,2 and Hilda A. Cerdeira3
1China Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing 100080, China

2Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China
3International Center for Theoretical Physics, P.O. Box 586, 34100 Trieste, Italy

~Received 4 April 1996!

A spatial coherent and temporally chaotic state in globally coupled maps exists in the strong coupling
regime. After the coherence loses stability the whole system is attracted to a two-cluster attractor@M1 ,M2#.
The number of elements in the clusters depends on the initial conditions, which are chosen at random. We find,
numerically, that the number of elements in the clusters obeys a power law decay near the onset of the
transition. The difference of the two clusters displays a temporal behavior characteristic of on-off intermit-
tency, although the distribution of the laminar phases shows a phase transition as a function of its length,
making it essentially different from the latter.@S1063-651X~96!07809-9#

PACS number~s!: 05.45.1b

The transition routes to chaos in low-dimensional nonlin-
ear dynamical systems have been well understood. One of
them, the intermittency route, was classified into three types
by Pomeau and Manneville@1#. The essential feature of in-
termittency is that a simple periodic orbit is replaced by a
chaotic attractor, where the chaotic behavior is randomly in-
terspersed with periodic behavior resembling that before the
transition, in an intermittent fashion. Recently, the statistical
distribution of a different type of intermittency in some low-
dimensional nonlinear dynamical systems, called ‘‘on-off’’
intermittency, has been obtained analytically@2–10#. This
intermittency is characterized by a two-state nature. The
‘‘off’’ state, which is nearly constant, and remains so for
very long periods of time, is suddenly changed by random
bursts, the ‘‘on’’ state, which departs quickly from and re-
turns quickly to the ‘‘off’’ state. A self-organized on-off spa-
tiotemporal intermittency has also been reported in a system
of coupled maps via nearest-neighbors interaction@11#. In
this paper we focus our attention on some transitions that
take place in globally coupled chaotic systems.

Globally coupled systems are ubiquitous in nature. They
arise naturally in studies of Josephson junction arrays, mul-
timode laser, charge-density wave, oscillatory neuronal sys-
tem, and so on@12–14#. As one of the simplest globally
coupled system, the globally coupled map~GCM! has been
the subject of intensive research in recent years. Some rather
surprising and novel results, such as clustering, splay state,
collective chaotic behavior, and violation of the law of large
numbers in the turbulent regime are revealed in the GCM
model @15–18#. In this paper we will study the transition to
intermittency in the GCM model, which takes place between
the coherent and the ordered phases.

Specifically, we use the following form of GCM:
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wheren, i , and e are the discrete time step, the index of
elements, and the coupling coefficient, respectively. The
mapping function f (x) is taken as the logistic map

f (x)5ax(12x), anda is the nonlinear parameter.N is the
total number of elements or system size.

An important concept in GCM model is ‘‘clustering.’’
This means that even when the interactions between all ele-
ments are identical, the dynamics can break into different
clusters, each of which consists of fully synchronized ele-
ments. After the system falls in an attractor, we say that the
elementsi and j belong to the same cluster ifxn

i [xn
j . There-

fore, the behavior of the whole system can be characterized
by the number of clustersncl , and the number of elements of
each cluster (M1 ,M2 , . . . ,Mncl

) @15#.
As the nonlinearity or coupling strength is varied, the sys-

tem exhibits successive phase transitions among coherent,
order, and turbulent phases@15#. We shall study the transi-
tion from the coherent chaotic state to a two-cluster chaotic
attractor in the strong coupling regime.

In the coherent chaotic region the system is homogeneous
in space, i.e.,xi[xj , ; i , j , and chaotic in time. Thus, it is
characterized by only one cluster, i.e.,n151, M15N. The
motion of each element is equivalent to that of the single
logistic map. The stability condition for this coherent state is
that modulus of all eigenvalues of theN3N stability matrix
J5)n51

m f 8(xn)J0
m has magnitude less thanone. Here

f 8(xn) is the derivative of thenth iteration of the logistic
map;m is taken as the periodic number or infinity for peri-
odic or chaotic motions, respectively.J0 is aN3N constant
matrix given by

S 12e1
e

N

e

N
•••

e

N

e

N
12e1

e

N
•••

e

N

••• ••• ••• •••

e

N

e

N
••• 12e1

e

N

D . ~2!

The matrixJ0 is a circulant matrix, and can be written as
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The eigenvalues ofJ0 are given by

m0,151,
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Thus the eigenvalues of the stability matrixJ are

m15 )
n51

m
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The eigenvector corresponding to the eigenvaluem1 is given
by (1/AN)(1,1, . . . ,1)T. Thus, the amplification of a distur-
bance along this eigenvector does not destroy the coherence.
Eigenvectors for the otherN21 identical eigenvalues are not
uniform; the amplification along these eigenvectors destroys
the coherent phase. Therefore, the stability condition of the
coherent chaotic state is decided by theN21 identical ei-
genvalues. Their corresponding Lyapunov exponents are

l5l r[ ln~12e!1l0 , r52,3, . . . ,N, ~6!

where l0 is the Lyapunov exponent of the single logistic
map. Therefore, the critical stability condition is given by
l50, i.e., ec512e2l0. Whene is larger thanec , all ele-
ments quickly evolve to the same motion~the homogeneous

state! after a short transient process, sincel,0. Generally
speaking, we are only interested in the parameters where the
behavior of the single logistic map is chaotic,l0.0. We
have performed calculations for different values ofa within
the chaotic region. The results that we shall describe hold for
all of them, therefore, we fixa54 and N5200, where
l05 ln2, thus, we haveec5

1
2. Figure 1 shows a space-time

evolution ate50.501. The initial condition of each element
is randomly chosen in the uniform interval@0,1# throughout
this paper. It is very clearly observed that all elements syn-
chronize after almost 1100 iterations. We make the figure
according to the rule: ifuxn( i )2xn(1)u.1024, then the cor-
responding pixel is black, otherwise, it stays white.

When the couplinge is slightly smaller than the critical

FIG. 1. Space-time evolution of the system atN5200, a54,
ande50.501.

FIG. 2. ~a! The same as in Fig. 1 fore50.499.~b! The space
structure of the system after the (33105)th iterations of Eq.~1!.
Two clusters are clearly observed.
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value ~0.5!, the system suddenly evolves to a two-cluster
attractor (M1 ,M2) @M11M25N5200# after the transient
process. Figure 2~a! shows a space-time evolution at
e50.499. After some iterations, the system is exactly set
down to a two-cluster chaotic attractor (M1 ,M2)5(8,192).
The space structure after the (33105)th iterations is also
displayed in Fig. 2~b!. Two clusters are clearly observed.
M1 andM2 depend on the chosen random initial conditions.
Since the sum ofM1andM2 is always the same~200!, only
one of the two numbers can be varied freely. Assuming the

free variable to beM1, with M1,M2, then we have
1<M1<100. We choose many random initial conditions,
and iterate Eq.~1! for each one, then found, numerically, that
the distribution of variousM1’s obeys an exact power law
decay as the control parameter crosses the critical value from
above. Figure 3 shows the distribution ofM1 for e50.499.
A total of 105 different random initial conditions to iterate
Eq. ~1! were computed to obtain this curve. Except for the
first several points, this distribution is a bonafide power law
decay with an approximate exponent21.11.

When the system falls in a two-cluster attractor, the dy-
namics can be replaced by
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2
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j !, i51,2. ~7!

Although the behavior of each cluster is chaotic, the differ-
ence of the two clusters (x12x2) shows some very interest-
ing and complex features. Figure 4 shows a time evolution of
x12x2 for the same parameter as those of Fig. 2. It is easily
observed thatx12x2 remains a long time near zero, and
suddenly departs from it and quickly returns after some ran-
dom bursts. As the deviation fromec becomes large, more
and more random bursts frequently occur.

In order to better characterize the intermittent behavior,
we have calculated numerically the statistical distribution of
the duration of the laminar phasex12x2 shown in Fig. 5 for
several thresholds of the differencet at e50.499. These
thresholds for the laminar phase are defined byux12x2u
,t, with t ranging from 1022 to 1026. For each threshold a
total of 23109 iterations of Eq.~1! were computed to obtain
these curves.Pn represents the probability of the laminar
phase of lengthn, namely,Pn5Mn /M , whereM is the total
number of segments of the laminar phase,Mn the number of

FIG. 3. The distribution of variousM1 ~log-log plottings! for
e50.499. The dashed line is the perfect21.11 power law decay.

FIG. 4. The evolution of the difference of the two clusters after
some transient process ate50.499.

FIG. 5. The relative distributionPn of the laminar phases of
x12x2 plotted againstn ~log-log plot in the large frame and
n-log plot in the upper small frame! for several thresholds at
e50.499.
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those of lengthn. The distribution has the following remark-
able property. For small segments of the laminar phase
(n,15) the distribution quickly tends to the same exponen-
tial law decay with an asymptotic exponent20.7 as the
thresholdt decreases~see Fig. 5!. We found numerically that
this exponent is independent of the control parameters for
small values ofn, while for large segments of the laminar
phase the distribution seems to depend on the threshold of
the laminar phase. For large values oft it obeys an asymp-
totic power law decay~seet51022). As the threshold de-
creases, this power law is gradually replaced by another one.
The new exponent (2b2) depends on the deviation of the

parametere from the critical valueec . Figure 6 shows the
relation of b2 and the coupling deviationec2e. It can be
best fitted by

b252~ec2e!. ~8!

Actually, this statistical distribution should be independent
of the threshold chosen for the laminar phase. In order to get
the invariant distribution, we take smaller values oft
(1025 is enough!. The invariant distribution can be approxi-
mately formulated as

Pn}H e2b1n, n,ns ,

e22~ec2e!n, n.ns ,
~9!

where b1'0.7 andns'15. Thus, the distribution of the
laminar phase described in this work shows a transition at
ns . Although this type of intermittency has similar charac-
teristics to those of the conventional on-off intermittency
~see Fig. 4!, this transition does not exist in the latter, since
its distribution obeys an asymptotic power law near the on-
set, with exponent2 3

2.
In conclusion we have investigated the intermittency tran-

sition from a coherent chaotic state to a two-cluster chaotic
attractor in globally coupled systems. We have found a new
intermittency transition for globally coupled maps. We found
that the numbers of elements in the clusters obey a power
law decay near the onset of the transition. We have seen that
this type of intermittency is essentially different from the
types of intermittency known before, showing a phase tran-
sition as a function of the length of the laminar phase. The
features of this type of intermittency are rather generic for
globally coupled chaotic systems and are independent of the
local mapping function, which we have taken as the logistic
map to illustrate the phenomenon. Both spatially global uni-
form coupling and chaotic motion of the individual elements
are of crucial importance.
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FIG. 6. b2 vs ec2e at ec50.5. The diamonds are numerical
results. The slope of the dashed line is 2.
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