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Abstract. A new ballistic-like surface growth model of two kinds of particle (A and C)
depositing on a two-dimensional substrate is proposed. The scaling behaviour of the surface
width W is obtained for different values of the deposition probabiktyf particle C and system
sizes. As the probability’ increases a transition of the morphological structure is found, which

is defined by the exponeptvarying with the probability?. The physical origin of the transition

is discussed in terms of the diffusion of particles and the directed percolating processes.

1. Introduction

The growth of rough surfaces and interfaces has been a subject of considerable interest
because of its technological importance, and its relevance for understanding nonequilibrium
statistical physics at fundamental level [1, 2]. A dynamical scaling behaviour has been
found by Family and Vicsek [3]. On defining the surface width(L, ¢) by

WAL 1) = % > [0 5] (1)

whereL is the system sizé,(r, 1) is the height of the surface at positiorand timer, and
h(t) is the mean surface height, the scaling law is given by
W(L. 1) = L* f(t/L%). ()
The dynamical scaling behaviour is characterized by the roughness expponant the
dynamical exponeng, with z = «/8. The scaling functionf (x) behaves ag (x) = x*
for x < 1 and f(x) = ¢ for x > 1, with ¢ being constant. This scaling behaviour has been
studied in various systems and models, and has been argued to be universal [1, 2]. One
successful theoretical approach is the Kardar—Parisi—-Zhang (KPZ) approach [4], based on
Edwards and Wilkinson’s theory [5]. The KPZ equation is a nonlinear Langevin equation
oh A
5 =" VZ2h + é(Vh>2 +n(x, 1) ©)
for the local growth of the profilé(x, t) of a moving interface about @ — 1)-dimensional
flat substrate [4]. Scaling arguments (power counting) as well as a one-loop renormalization-
group (RG) calculation applied to equation (3) show that weak noise is relevant for
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d < d. = 2, and irrelevant ford > d. [4, 6]. For spatial dimensio@ = 2 (substrate
dimensiond’ = d — 1), the results for ballistic deposition, the Eden model, and the KPZ
equation [4, 6, 7, 8] agree, giving = 1/2 and8 = 1/3. However, ford > 2 there

is still disagreement over the values of the exponents as well as the universality of the
various surface growth models [9]. In addition, the RG analysis indicated the possibility of
a nonequilibrium roughening transition from the weak-coupling to a strong-coupling regime
ford > d.. It has also been suggested that anomalous roughening behaviour may arise at the
transition. Recently, some new understanding of the phase transitionstfarddmensions

and above and weak-strong-coupling crossovers fet 2limensions and below of the KPZ
equation have been achieved (see [10-12] and references therein). Some work on these and
other growth models for various dimensions has been reported (see [10-15] and also the
excellent review articles in [1, 2, 16] and references therein). Several typical examples are as
follows. Amar and Family [13] used a generalization of the restricted solid-on-solid growth
model of Kim and Kosterlitz [9]. On the other hand Yan, Kessler and Sander [14] introduced
an ad hoc parameterP whose effect is to smooth the surface exactly as the Laplacian
term does in the KPZ equation. Pellegrini and Jullien [15] made an interpolation between
the nonrestructured and the completely restructured ballistic model, considering a random
binary mixture of particles that slide or stick to the deposit upon contact. Tang, Nattermann
and Forrest made a comparison between their hypercube-stacking model with deposition
and evaporation of the particles and their renormalization-group treatment (see [10-12]).
They all found that the system exhibits a phase transition as a function of a temperature-
like parameter in 2+ 1 or in higher dimensions. The phase transition is considered as
a nonequilibrium analogue of the roughening transition. However, it is still important to
know whether the observed roughening transition or the morphological structure transition
will appear for more general surface growth cases by studying the discrete models with
continuously tunable parameters which may be related to those in the KPZ equation. These
may provide new insight into the dynamics of the surface growthifer 2.

So far we know that the ballistic deposition model [3, 17, 18] and the Eden model [19—
21], as well as some other surface growth models, give rough surfaces that are self-affine
but not self-similar [1, 2]. Among them, a well-studied example is the ballistic deposition
model. In this model, particles rain down vertically ontqda— 1)-dimensional substrate
and aggregate upon first contact. Such a model gives rise to a rather interesting structure;
the surface is a self-affine fractal [1, 2] although the bulk is not compact, and has been
extensively studied both on [17] and off [22] the lattice. Although the models described
above have been proposed for studying the surface growthHid And 2+ 1 dimensions,
as well as higher dimensions, all of them are only concerned with the growing of one kind
of particle system [1, 2, 16]. Generally, in the growth of real materials one should take it
into consideration that different kinds of particle are deposited on these structures, such as
impurities in materials. Thus, in the growing system, there may exist different interactions
for different particles and the growing mechanisms may also be different.

Following our previous study for thél + 1)-dimensional case [23, 24], here we report
further results of a new surface growth model of two different kinds of particle, namely, the
ballistic-like deposition model, in 2 1 dimensions. We describe the kinetic growth of the
deposition of two kinds of particle A and C (particle A with probability-1P and particle
C with probability P) on the substrate. We use the probabiltyas a continuously tunable
parameter to control the system. We study the dynamical scaling behaviour of the surface
growth via computer simulation with various system sizes and probafilityWe find that
there is a transition: above a probabili®y the scaling exponerg increases rapidly, which
corresponds to the change of the morphological structure in the system.
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The arrangement of this paper is as follows. In section 2, the ballistic-like deposition
model and the physical motivations are presented. In section 3, the dynamical scaling
behaviour of the surface width and the results are discussed. The morphological structural
phase transition is discussed in section 4. Finally, a conclusion is given in the last section.

O O O
@) ! ) \)
d O _
J
—

=

Figure 1. The ballistic-like deposition model of two kinds of particle. The circles represent
the falling particles (particle A or particle C), the squares represent particle A and the squares
with a cross denote particle C. The vertical arrows show the falling direction and the right- and
left-pointing arrows show the positions where the falling particles may stick.

2. A ballistic-like deposition model for two kinds of particle

Two different kinds of particle, particle A (the active particle) with a probability £ and
particle C (the nonactive particle) with a probabili®y are deposited on a two-dimensional
substrate. The particles are allowed to fall straight down randomly, one at a time, onto a
growing surface. At first a column (or sité), j) is selected randomly, and then a particle

A (or particle C) is deposited on the surface of the aggregation with a probabifiti {or

P). The deposition occurs once the dropping particle first encounters a particle A wherever
it is—on the top or in one of the neighbouring columns of the chosen column. For instance,
if the dropping particle falls down along colunih j), and it first meets a particle A which

is at the top of columrti, j) or at the top of one of the four nearest-neighbouring columns
G+1j), (-1, G j+1 and @ j — 1), then this dropping particle sticks to the
particle A on the top of the columcy, j) or it sticks to the side of the particle A of the
neighbouring column, and the falling stops. That is, the deposition not only happens on the
top of the chosen column, but also on the side of nearest-neighbouring columns. When the
falling particle first meets a particle C on a neighbouring column, it can fall continuously
until it meets a particle A if it has not reached the top of the on-site column. In addition,
if the particle first meets a particle C on the top of the on-site column, it is allowed to
choose a direction at random and then continues to fall down until it finds a particle A;
otherwise this particle is abandoned. For this case there is another situation: if a particle
falls on a C patrticle with no lower neighbouring columns, this particle is also abandoned.
The deposition rules are depicted in figure 1.

The continuous falling-down process of a particle might be considered as a kind of
diffusion. However, this diffusion is weak for small probabili®y since the number of
incoming particles C is small and it is easier for the incoming patrticle to find a particle A,
and is strong for large probabilitf because of the large number of particles C located on
the surface of or inside the columns.

The physical motivations for such model are as follows. First, it describes chemical
reactions which take place on the growing surfaces of materials. For example, it models
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the reaction process A B = C where particle A and particle B are active. Once particle A
is touched by patrticle B, the combination produces a product C which is no longer active.
The particle A is chosen with a probability-1 P, and the particle B with probability?,
i.e., the reactant C is produced with the probabilkywhen P is small. Thus, in this
system, some of the surface sites continue to react while some sites do not. Second, it
represents the surface growth of a material with a low concentration of impurities. These
impurities are represented by particle C which has bonds that are less active than those of
particle A. Third, it describes the deposition of two kinds of particle (one heavy and one
light) with different attractive forces. Finally, the surface growth processes of the particles
on the aggregation might be considered as a kind of percolation of the particles (see [25]
and references therein). The deposition of particle A introduces connective bonds for the
incoming particles A and C, while the deposited particle C ‘forbids’ both particle A and C
to stick to it. The surface keeps growing as long as the surface sites are not entirely covered
by the nonactive particle C.

When P = 0, our model is reduced to the usual ballistic model with only one kind
of particle involved and it has been studied extensively i 1 and 2+ 1 dimensions
[1, 17, 18, 22]. The surface growth shows a dynamical scaling behaviour which belongs
to the KPZ universality class. On the other hand, for= 1 the surface will become
completely inert after deposition of one layer of particles—that is, the particles C will cover
the initial surface entirely and no growth occurs. When# 0, the deposition process
will be affected by the existence of the particles C, and there will be a diffusion of the
particles which results from the disregard of the existence of particles C by the incoming
particles. It is this diffusion that makes the kinetic growth of the surface and dynamical
scaling exponents quite different from that in the standard ballistic deposition model, and
may result in different morphological structures as we have found inlthel)-dimensional
case [24]. Physically, between these two limitsfof= 0 andP = 1, a percolation threshold
1— P. is expected to exist for the particle A such that ®r< P., the aggregation can
grow indefinitely, and forP > P,., the cluster of particle A will be restricted to being small.

3. Dynamical scaling behaviour

Consider a square substrate of sitle The aggregation occurs in th&-direction. At the
beginning, all sites are occupied by particles A #or< 0. Periodic boundary conditions
are used in both th&- and Y-directions. The statistical average is obtained over 500
independent simulations for each parameter. We find that when the systerh siZg0,
the surface widthW has a size dependence at the early time. This results clearly from the
feature that the system siZeis too small. Thus, in this work we always use a system size
L > 80.

Figure 2 shows a log—log plot of the surface widlthas a function of time (the numbers
of deposited particles) for different values of the deposition probabflignd fixed system
size L = 100 (figure 2(a)), and for different system sizesand fixed probabilityP = 0.3
(figure 2(b)), respectively. From figure 2(a), we see the usual ballistic deposition (solid
line), i.e., the ballistic deposition of only one kind of particle (particle A)RP= 0. The
width of the surface first increases very fast, and then experiences a slowing down, and
finally saturates to a fixed value. The scaling result for the expofeist the same as
obtained by previous authors [17, 21], thatgis= 0.2384 0.005. ForP # 0 and smallP,
the surface width becomes smaller as the probabititincreases and the saturation state
is reached early. However, fa? > 0.5 the surface width increases more rapidly as the
time increases, and the system saturates much faster. These features can be clearly seen
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Figure 2. The logarithm of the surface width, 9% (¢), versus the logarithm of time, leg,
for (a): system sizd. = 100; (b): probabilityP = 0.3.
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from figure 2(a); beforeP = 0.5 the curves are below that fa# = 0 and above it for
P > 0.5. We define this probability as a transition probabil®y, with P, = 0.5. Its
physical explanation will be discussed in section 4.

From figure 2(b), we can see that the saturated widths of the surface are different for
different system sizes. The growth of the surface for short times is the same. But for
large values ofL, the system takes a long time to reach the saturated state. From the
scaling of the saturated surface width with system sW¥¢; = oo) ~ L%, we can obtain
the roughness exponeat For two different probabilities? = 0.3 and P = 0.6 which are
values of the probability? lower and higher tha®., the exponen& has been calculated to
bea = 0.37+ 0.04 ando’ = 0.30+ 0.03, respectively. This gives two different values of
the roughness with > o’ which may indicate that the surface fBr< P. is smoother than
that whenP > P.. We also find that the exponentsand 8 obtained in our model satisfy
the KPZ scaling lawx + z = 2 within 4% for P < P,, but it is not obeyed fo? > P..

5 T T ; T T ;
45 < 200x200 -
. 4 | + 100x100 .
3
Il
- .
S i
=
25 -
Figure 3. The logarithm
2 1 L L 1 4 . of the saturated surface width,
0 01 02 03 04 05 06 0.7 logW( = oo, versus the prob-
Probability (P) ability P for two different system

sizesL = 100 andL = 200.

In figure 3, we plot the saturated surface width versus the probabilftyr two different
system sizes. We can see that the saturated width varying with the prob@bgitpws a
nonmonotonic relationship—that i8/ (+ = oo) first decreasing and then increasing as the
probability P increases. The values of the probabilities of the minimal points are aro&nd 0
i.e., P. ~ 0.5 for both cases of different system sizes. It is worth noting that in figure 3, we
have included the values of the saturated width o= 0. As we can see, these saturated
widths are logW (r = o0) = 2.88 and 363 for L = 100 and 200, respectively. They are
just on the lines shown in figure 3. This strongly supports a monotonic decrease of the
saturated width with respect to the probabilfy

We have also plotted the exponeptss a function of the probabilit, and forP < P,
we find thatg is almost unchanged with increasing probabilRy and increases rapidly
after P. has been reached (see figure 4). Notice that the definition for the value of the
transition probability P, here is slightly rough. For a more precise definition, one must
study the critical behaviour (see the following discussion).
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Figure 4. The scaled exponert at early times of the surface growth against the probab#ity

4. A morphological structural phase transition

From the discussion in the last section, we see that for the ballistic-like deposition model
the dynamical scaling behaviour shows us that as the probability of deposition of particle C
increases, there exist two different scaling regions separatétl by0.5. We define this as
a transition in the morphological structure. This kind of phase transition is due to a special
diffusion process which results in a directed percolation of the active stateP BoP,, the
nonactive particles tend to connect themselves to form a large inert cluster, which blocks
the connection of the active cluster of particle A. Therefore, the morphological structures
are different when the deposition probability is below or above its critical v&ue

Figure 5 shows the shapes of the surface. We see that the surface is locally rough and
on average the differences in heights between the valleys and the peaks are not very big
for P < P, (see figure 5(a) and 5(b)). Wheh > P., the surface is dominated mainly
by relatively large terraces, and the terraces have a large difference in heights as shown in
figure 5(c). Microscopically, the formation of such different morphological structures can
be understood as follows: for smah, the deposition of particle A occurs more frequently
and these depositions form a lot of barriers locally which block the continued falling down
of particles, and the particles have more chances to attach to the sides of the columns and
overhang is produced more easily. Thus a local valley between columns may be connected
because of the overhang and the differences in heights between the columns are small,
which makes the surface appear morphologically rough down to short length scales. At the
same time the structure below the surface is less compact; there are many holes under the
surface due to the overhang that arises. Nevertheless forP., the influx is dominated
by particle C, while the overhang of particles is more difficult to produce. Therefore the
deposition of particles A and C has a high probability of being located on the terraces once
these terraces have been formed. The difference in heights between the terraces is large.
From the continuous falling of particle C it looks like particles C aggregate together to form
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Figure 5. See facing page.
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Figure 5. Three-dimensional plots for the shapes of the surface with different probabitties
for the saturated states: (a8),= 0; (b), P = 0.5; (c) P = 0.63.

big clusters.

In figures 6, we show plots of the density of the particles in the system. White areas
represent particles C, dark areas represent particles A, while grey gives an idea of the
height of the column. It is clear that faP < P. the particle distribution of both A and
C is basically uniform and the sizes of the clusters of particle A are big (see figure 6(a)
and 6(b)), while forP > P. the terraces are clearly seen and the sizes of the clusters of
particle A are small (cf. figure 6(c)). Furthermore, in order to verify the above, we have
also counted the number of particles &,, on the surface as shown in figure 7. We found
that N. has a linear relationship with the probabiliBy;, having different slopes before and
after the transition. Actually, when we observe the density of particles C as a function of
the probability for the whole aggregation, it will also show a similar change below and
aboveP,.

All of the above discussions indicate that there exists a morphological structural phase
transition in the surface growth by ballistic-like deposition. Comparing these results with
that of [24], for the(1+ 1)-dimensional case, the transition is more apparent due to stronger
diffusion of particles C, which is enhanced by the second spatial direction. The surface
growth has a higher upper limit value of the probability P,,, for the complete stopping
of the growth, i.e, disappearance of the bonding sites beyyndit has been found that this
value is shifted fromP = 0.35 for the(1+ 1)-dimensional case t& = 0.65 for the present
(2 + 1)-dimensional case. In thé€l + 1)-dimensional case, we found it difficult to find
convincing evidence that there is a such phase transition since the range of the probability
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Figure 6. See facing page.
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Figure 6. The density plots for system at the saturated states, with the white area for particle
C, the dark area for particle A, and the grey area for the height of the columm? £ap; (b)
P =0.5; (c) P =0.63.

of deposition studied is much narrower and the scaling behaviour of the saturation surface
width and the exponent with the probability is not so apparent. However, in the present
case, the deposition probability has a wider range and the expgneletarly varies a lot
above the transition.

Physically, the morphological transition studied in the present paper corresponds to a
change from an active state to an inert state, which could be described by directed percolation
theory. Evidence for this is the appearance of large clusters of particle C sites on the surface
aroundP.. For P < P,, the falling particle (A or C) connects to a patrticle A easily. The
surface grows continuously and a directed percolating cluster (particle A) extends over the
whole system. FoP > P., a typical connected particle A cluster extends over a small
distance, i.e., the connected particle C cluster will extend over the entire system. As a
result, this directed percolating process governs the growth of the surface microscopically,
which makes the surface structures different from each other for the probabilitglow
and aboveP..

5. Conclusion

Before concluding, it is worth making a remark on the scaling exponents. In our simulations,
we have obtained various exponetsand « for different probabilities. For values of the
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Figure 7. The number of particles C on the surface in the saturated state against the probability
P for the system sizé. = 100.

probability P < P., we find that they satisfy the KPZ scaling law, while they do not
satisfy it for P > P.. In fact, this is also due to the kinetic diffusion of the particles.
For P < P., the local distribution of particles is dominated by the active particle A; the
incoming particles A or C basically do not need to diffuse, and they can easily stick to the
surface. Thus, the ‘interaction’ between the particles is strong, and the nonlinearity in the
growing processes due to diffusion and local geometric symmetry is weak, and the model
is close to the usual ballistic deposition model. The scaling exporfeatsd «, of course

have values similar to those of the usual ballistic deposition model which has been found
to fall in the KPZ universality class. The situation will become different as the probability
increases. The local positions on the tops of the columns or inside the columns have a high
probability of being occupied by particles C which forces the incoming particle to diffuse
before deposition. This introduces a weak ‘interaction’ between the particles, which makes
the kinetics of growth different from that of the usual ballistic deposition model. Therefore
the scaling exponen{8 anda will no longer follow the KPZ scaling law. This means that

the continuum KPZ equation does not apply to this case for the parameter Pangg..

From the changes in the surface morphological structures and the sticking rules of
the particles, we could interpret our results in terms of the directed percolation theory.
In fact, the relationship between the roughness of the surface of the growing aggregation
and the percolation behaviour could be explained in terms of the power-law behaviour
of the correlation length and the steady-state velocity of the surface growth. Since we
are only interested in the dynamical scaling of surface growth at early times and report
a possible morphological structural transition in this new model, we did not study the
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critical behaviour around the transition. For a complete understanding of the kinetics and
the percolation behaviour, much more detailed work, such as a study on the relationship
between the roughness exponent and the growth velocity as a function of the prok@bility
for long times, and the characterization for the critical behaviour, is needed. We will report
this in the following work.

In conclusion, we have proposed a new ballistic-like surface growth model for deposition
of two kinds of particle (A and C) on a two-dimensional substrate. We have obtained the
scaling behaviour of the surface widi for different values of the probability of particle
C and system sizes. We find that there is a phase transition of the morphological structures
as the probability increases. This transition is defined by the expgheasta function of
the probability P. We argue that the physical origin of the transition lies in the diffusion
of the particle which passes through the less active particle C without reaction with it. It
is the kinetic diffusion and the interaction between the two kinds of particle that results
in the growth of the surface through the directed percolation process. The morphological
structural transition could be interpreted as a transition from an active state to an inert state.
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