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We report a dynamical study of multiplicative diffusion coupled map lattices with the coupling
between the elements only through the bifurcation parameter of the mapping function. We discuss
the diffusive process of the lattice from an initially random distribution state to a homogeneous one
as well as the stable range of the diffusive homogeneous attractor. For various coupling strengths we
find that there are several types of spatiotemporal structures. In addition, the evolution of the lattice
into chaos is studied. A largest Lyapunov exponent and a spatial correlation function have been used
to characterize the dynamical behavior. ©1996 American Institute of Physics.
@S1054-1500~96!00401-2#

I. INTRODUCTION

Phenomena with spatiotemporal complexity are common
in nature and can be observed in fluid, chemical, optical, and
solid-state turbulence, pattern formation, neural networks,
parallel computation problems, and so on. For example, tur-
bulent flows, chemical reactions with diffusion, spin wave
turbulence, and biological networks are some complex phe-
nomena which can display chaotic dynamics. These systems
must be described by taking into account spatial variables,
and in recent years exciting studies on spatiotemporal chaos
have been performed.1–9 Spiral waves are also presented in
some interesting biological phenomena as morphogenesis or
in brain dynamics.10 In some cases they become unstable
giving rise to turbulent~chaotic! behavior from an initially
well-defined spatially ordered state. A strange attractor can
be obtained then by calculating the time evolution of the
given variables in concrete points of the space domain. On
the other hand, many dynamical properties have been ex-
plored with coupled map lattice models. Phase transitions,
chaotic strings, intermittency, turbulence, and other phenom-
ena have been particularly well characterized.6–8,11–13

It is well known that some nonlinear continuous models
based on reaction diffusions can give spatial structures
through Turing symmetry-breaking instabilities and it seems
an evident step to consider an equivalent approach based on
the coupled map lattice theory.14 The coupled map lattice
which has been studied intensively during the last years is a
dynamical system with a discrete time, discrete space, and
continuous state. There are many one-dimensional models
which can be given by

xn11~ i !5a f „xn~ i !…1bg@ f „xn~ i !…, f „xn~ i11!…,

f „xn~ i21!…#, ~1!

where the functiong can, for instance, be chosen as the
diffusive coupling

g5 f „xn~ i11!…1 f „xn~ i21!…22 f „xn~ i !…; ~2!

one-way coupling

g5 f „xn~ i !…2 f „xn~ i21!…; ~3!

also, models with global coupling have been studied,

g5(
j51

N

f „xn~ j !…, ~4!

and so on. For the logistic mapping function,f512Ax2, a
complex dynamical behavior has been found which contains:
period doubling of kink–antikink pattern; zigzag patterns~or
antiferro-like structures!; spatiotemporal intermittency: burst
and laminar regions from complicated spatiotemporal pat-
terns; and spatial amplification of noise.6,7,11However, all of
these models are too simple to discuss the dynamical behav-
ior of a real system although one still hopes that some of the
novel features are useful to understanding the behavior of
many different systems.7

In this work, we present a dynamical study of multipli-
cative diffusion coupled map lattices where the coupling be-
tween the elements is chosen only through the bifurcation
parameter of the mapping function. Our aim here is to dis-
cuss the diffusive process of the coupled map lattices from
an initially random distribution state to a homogeneous one,
and to study the spatiotemporal structures and the dynamical
behavior of the system when the coupling parameter varies
over some ranges. In addition, we are also interested in find-
ing how the system develops into chaos when the coupling is
increased. The organization of this paper is as follows. In
Sec. II, we present the model as well as a simple analytical
treatment of the diffusive process. Then we demonstrate the
spatiotemporal structures of the lattice and discuss the statis-
tical property and the spatial correlation in Sec. III. In Sec.
IV, to characterize the dynamical behavior of the lattice, we
calculate the largest Lyapunov exponent. Finally, we give
the conclusions in the last section.
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II. SPATIOTEMPORAL STRUCTURES OF THE
MULTIPLICATIVE DIFFUSION COUPLED MAP
LATTICES

A. Model

The state of any element with discrete coordinatej at the
time momentn of the multiplicative diffusion coupled map
lattices~here we only consider the one-dimensional case! is
characterized by the variablexn( j ). Evolution of the state of
the lattices as a function of the discrete time stepn is speci-
fied by the map

xn11~ j !5 f @xn~ j !,Dn„xn~ j !…#, ~5!

whereDn„xn( j )…5D01D]2xn( j ) represents the bifurcation
parameter of the mapping and the coupling between the ele-
ments is given by

]2xn~ j !5 1
2@xn~ j11!1xn~ j21!22xn~ j !#, ~6!

andD0 is the bifurcation parameter in the absence of cou-
pling, i.e.,D0 corresponds to the bifurcation parameter with-
out spatial correlation, andD is the coefficient of the cou-
pling between the elements.15

For simplicity, we choose the mapping functionf (x) to
be the logistic map

f ~x!5mx~12x!. ~7!

Thus, the model becomes

xn11~ j !5@D01D]2xn~ j !#xn~ j !@12xn~ j !#, ~8!

with the coupling parameter defined by Eq.~6!.
From Eq.~8!, we can see that if the correlation in space

is zero ~D50!, the dynamical state of the lattices depends
simply on the single logistic map with the well-known
period-doubling route to chaos as the parameterD0 is in-
creased. It means that the lattice consists of a set of indepen-
dent elements. This is a trivial case in the present study.
However, as long asDÞ0, the state of the lattice not only
depends on the coupling, but also on the value ofD0. In this
paper, we restrict ourselves to the case 1,D0,3, for ex-
ample, D052.9, for which value the logistic map
xn115D0xn(12xn) has only a stable fixed point
x*5121/D0 . However, in our coupled lattice, we will have
several types of spatiotemporal structures for different values
of D due to the coupling between the elements as discussed
in Sec. II B.

This multiplicative diffusion coupled map lattice can be
used as a simple model for the reaction–diffusion process. It
can be considered as a coarse discretion of the reaction–
diffusion equation, which governs the growing phase

]x

]t
5 f

]2x

]r 2
1v~x!, ~9!

where the coefficientf5 f [x(r ,t)] depends on the state of
the systemx(r ,t) and, thus, varies both in space and time,
and v(x) is the velocity of growth. Whenv(x)50 Eq. ~9!
describes the crystal growth for a supercooled liquid.16 In a
recent paper Ben-Jacobet al.17 studied the interfacial pattern
formation during diffusion-limited growth ofBacillus subti-

lis, they proposed a phase-field-like model~the phase being
the bacterial concentration and the field being the nutrient
concentration! to describe the growth. The bacteria–bacteria
interaction is manifested as a phase-dependent diffusion con-
stant,D~f!, in their model:

]f

]t
5D~f!¹2f1g~f,c!, ~10!

which is a higher-dimensional version of Eq.~9!. In addition,
diffusing coupling appears also in cellular automata models
of some chemical and biological systems, such as the bio-
logical populations with and without generation overlap if
we consider a coupled model of multisubsystems. One
should be aware, however, of the fact that the discretization
of these continuous equations introduces new phenomena. In
particular, the chaotic states found in a lattice mapping may
not have the counterparts in the continuous space–time mod-
els. Also, it should be noticed that the analysis of stability
based on a minimum wavelength, which will be presented in
the next section, will not work for a continuous space dimen-
sion.

B. Diffusive homogeneous attractor and frozen
phenomenon

Suppose an initial state with a random distribution, i.e.,
x0( j )P~0,1! for ( j51,N) whereN is the size of the lattice.
In the case of 1,D0,3 after a number of iterations of Eq.
~8!, the lattice may reach a homogeneous state~or diffusion
homogeneous state!, xn( j )5x* for ( j51,N) with the value
of D changing over some ranges. This entire stable diffusive
homogeneous state is an attractor since it is a fixed point of
the lattice. However, one can expect that as the coupling
parameteruDu increases, the local small deviation may de-
stroy the stable state due to the influence of the coupling
between the elements. Now let us consider the range ofD
and the stability of this state. For certain element,i th, the
stability is determined by its small deviatione n

j from the
fixed point x* , xn( j )5x*1en

j . Then by substituting this
equation into Eq.~8!, we have

en11
j 5Aen

j 1B~en
j111en

j21! ~11!

with

A5D0~122x* !2Dx* ~12x* ! B5
D

2
x* ~12x* !.

~12!

In obtaining Eq.~11!, we have only taken the first order of
e n
j . In order to discuss the stability for various perturbations

~all the wavelengths!, we introduce a Fourier transform

en
j 5

1

N (
k51

N

ei2p~ jk/N!an
k ; ~13!

and

an
k5(

l51

N

e2 i2p~ lk/N!en
l ~14!
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with the normalization condition

1

N (
l51

N

ei2p l @~k2k8!/N#5dk,k8 . ~15!

Then we have

an11
k 5Aan

k12Ban
k cos~2pk/N!

5@A12B cos~2pk/N!#an
k . ~16!

Thus the stability condition for the statex*5121/D0 reads

21,A12B cos~2pk/N!,1. ~17!

From Eq.~17!, we know that the stability is governed by the
two extreme behaviors: cos(2pk/N)521 whenk5N/2, the
short wavelength case, and cos(2pk/N)51 for k5N, the
long wavelength case. For the short wavelength behavior we
have

uA22Bu,1. ~18!

That is

21,22D02
2D~D021!

D0
2 ,1; ~19!

and for the long wavelength case we get

uA12Bu,1, ~20!

which finally becomes

1,D0,3. ~21!

WhenD0 is chosen to be 2.9, we have

D2,D,D1 , ~22!

with D150.2213 andD2528.41. In addition to the stability
condition Eq.~17!, there is another implicit one:

1,D01D]2xn~ j !,3, ~23!

since we only discuss the diffusive homogeneous state of the
lattice. For 0,D,D1 , Eq. ~23! is always true. But for
D2,D,0, in some ranges ofD Eq. ~23! fails. It will be
shown that the lower limit value ofD, D3, for the existence
of this diffusive homogeneous attractor is equal to22.9, i.e.,
D3522.9 ~see following discussion!. In our numerical itera-
tions, we find that there is an excellent agreement for
D150.2213, the upper limit value for the lattice with a dif-
fusive homogeneous attractor with the analytic result given
by Eq. ~22!. WhenD3,D,D1 the state of the lattice con-
verges to the attractorxn( j )5x* with ( j51,N). However,
when D2,D,D3 , some sites have zero value of
xn( j ),xn( j )50. We call this state the frozen phenomenon
which is related to the breaking of Eq.~23!,
D01D]2xn( j ).1. The onset value ofD of the frozen phe-
nomenon is just the lower limit value ofD for the existence
of the diffusive homogeneous attractor. The mechanism of
this frozen phenomenon can be understood as follows. In
order to determine the onset value ofD of the freezing or the
lower limit value ofD for the diffusive homogeneous attrac-
tor, we assume that there is a freezing of certain sitei to
zero,xn( j )50, while the neighbors are still on the diffusive

homogeneous attractor, that is,xn( j11)5xn( j21)5x* and
xn( j )50. This gives]2xn( j )5x* and from Eq.~14!, then we
have

D01D]2xn~ j !5D01Dx*51. ~24!

Equation~24! gives the condition of the onset ofxn( j ) freez-
ing to zero,xn( j )50. From Eq.~24!, one gets

D352D0522.9. ~25!

Finally, we conclude that the stable range of the diffusive
homogeneous attractor isD3,D,D1 and whenD,D3, the
attractor is no longer stable and there is a frozen phenom-
enon, some sites attain zero value. On the other hand, when
D.D1, the attractor is also unstable and there will be a
multistable state ofxn( j ) since Eq. ~23! changes into
D01D]2xn( j ).3 and this corresponds to the case of bifur-
cation of the multiplicative diffusion coupled map lattices.

III. NUMERICAL ITERATIONS AND SPATIO-
TEMPORAL STRUCTURES

A. Spatiotemporal patterns

We have made a numerical iteration of Eq.~8! by using
an initially random distribution ofx0( j )P~0,1! with j51,N.
The size of the lattice isN51000 and a periodic boundary
conditionxn(N11)5xn(1) is also used in the present paper.
In Fig. 1, we have shown the time steps or the number of
iterations,n, with which the lattice reaches the diffusive ho-
mogeneous attractor,xn( j )5x* , ( j51,N) versus the cou-
pling coefficientD and the stable range of this attractor. The
criterion for the diffusive homogeneous attractor was such
that the attractor was reached withuxn( j11)2xn( j )u,1024

for all sites of the lattice. From Fig. 1, we can see that when
22.64,D,0.2212, the finally stable state of the multiplica-

FIG. 1. The stable range of the diffusive homogeneous attractor inD pa-
rameter space forD052.9 in Eq.~8!.
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tive diffusion coupled map lattices is a diffusive homoge-
neous attractor, while forD,22.64 andD.0.2212, there
exists no stable attractor forn up to 104. On the bottom of
this curve, the attractor is reached only aftern;30. In Fig. 1,
we only study the spatiotemporal structures for24.0,D
,3.2 since we kept Eq.~8! to be in ~0,1!.

In our iterations, we found that there are several types of
the spatiotemporal structures, or patterns:~i! When 22.64
,D,0.2212, the stable state is an attractorxn( j )5x* , the
diffusive homogeneous attractor. Here we found that there is
an excellent agreement with the previous discussion for the
upper limit value,D150.2213. But the lower limit value of
D is not equal to22.9. This is because there is a more
sensitive effect of the fluctuation of the system whenD ap-
proachesD3522.9 and the fluctuation makes the onset of
the frozen phenomenon occur earlier. An example of the
diffusive homogeneous pattern is shown in Fig. 2.~ii ! For
24.0,D,22.64, there exists a frozen phenomenon which
is shown in Fig. 3. We have seen that there are many sites
frozen to zero. The zeros divide the lattice into many do-
mains or subsystems and correspond to placing many insu-
lating walls in the lattice. These walls block the occurrence
of diffusion in the lattice since the boundary conditions for
these domains are fixed to zero. In a larger range ofD val-
ues, the number of the zeros,M , is stable, unchanged. For
small values ofuDu, M , becomes stable within a short num-
ber of iterations. However, whenuDu is larger, the number of
zeros stabilizes with a very long transient. The relation of the
number of zeros with the coupling coefficientD is almost
linear,M;D. In addition, we have seen that within the do-
mains, the dynamical behavior is complex. Some domains
are still on the attractorxn( j )5x* , some are chaotic. For
example, a small part of the attractor is shown in Fig. 4. To
get the figure, we have discarded 5000 iterations and plotted

1000 points for each site. From Fig. 4, we can see that the
sites within a domain equally distant from the boundaries,
zeros, undergo the same dynamical behavior. This means
that the interaction model is spatially symmetric. In Fig. 5,
we show a first return map for sitej5511, we see that the
dynamical state for this site is chaotic. The situation is the
same for other sites either still on the diffusive homogeneous
attractor or on the chaotic state.~iii ! When 0.2212,D
,1.215, the pattern is a period-2 state. A bifurcation diagram
for site j5456 is shown in Fig. 6~a!. The period-2 state is
stable over a large range of theD values. For 1.215,D,3.2,
the pattern undergoes a transition from a quasiperiodic to a
chaotic state@see Fig. 6~a!#. We will discuss this in the fol-
lowing section. In addition, in Fig. 6~b! we have also shown
the same diagram for the coupling function Eq.~6!,

FIG. 2. The diffusive homogeneous attractor withD052.9 andD521.0. FIG. 3. A snapshot of the frozen phenomenon withD052.9 andD523.0.

FIG. 4. A part of the attractor for sitesi5480–2540 of the lattice with
D052.9 andD523.0. 5000 iterations have been discarded and the follow-
ing 1000 points have been plotted for each site of the lattice.
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D]2xn( j ), for j5456. From this diagram, we can see that
due to the symmetry of the multiplicative diffusion coupled
map lattices, Eq.~6!, Fig. 6~b! is also symmetric about zero.
The bifurcation structure of this figure is the same as Fig.
6~a!. Therefore, we can conclude that the complex dynamics
of the multiplicative diffusion coupled map lattices, when
D052.9, results from the term of diffusion, or the coupling
equation~6!.

B. Statistical property and spatial correlation

Furthermore, we have checked the fluctuations of the
coupled map lattices for different system sizes. We consider
the mean-square deviation~MSD! of the fluctuations of the
mean field

MSD5^hn
2&2^hn&

2, ~26!

wherehn5(1/N)( j51
N f @xn( j ),Dn„xn( j )…# is the mean field.

The reason to study these fluctuations is the following: when
the system settles in a ‘‘turbulent’’ regime, its variables be-
have in a chaotic and seemingly uncoordinated way, and it
may be possible that it mimics an ensemble of independent
random variables. If this were so, thenhn should converge to
a fixed valueh* asN→`, with fluctuations around this lim-
iting value normally distributed~Central Limit Theorem!,
and with a dispersion that decays as 1/AN ~law of large num-
bers!. That is, the mean-square deviation MSD would de-
crease as the system sizeN increases. In Fig. 7, we show the
results for several different value ofD. It shows that as the
system size increases the mean-square deviation first de-
creases~except that ofD521.0 which is independent on the
system sizeN! and then it saturates asN increases. This
implies that an ensemble of the maps does not have a statis-
tical property.9 For the case ofD521.0, because the dy-

namical state of the multiplicative diffusion coupled map
lattices is a period-1 type and this state is not quasirandom,
the result remains almost constant asN changes. It is noted
that for Fig. 7, we have only used 50 runs for the statistical
averaging for each value ofD. If we use more runs, the
curves are smoother, but the conclusion remains the same.

In usual coupled map lattices with a finite range of cou-
pling, the law of large numbers is satisfied at the fully dis-
ordered state, because there exists a finite correlation length
j, such that the spatial correlation decays as exp(2r /j!.18,19

This is in contrast with the globally coupled case.20 On the
other hand, there are some examples showing the spatial or-
der with temporal chaos, where the correlation does not de-
cay; for instance, the pattern and domains in Ref. 21 belong
to this class. In a system with a local spatial interaction, the
breakdown of the law of large numbers implies the appear-
ance of some kind of spatial orders.20,22 In our cases, for the
frozen state, the correlation between the lattices is small be-
cause there are many zeros which block the correlation. Al-
though within the small domains the lattice may be corre-
lated together, the whole system is divided into many small
subsystems and there are no correlations between them. The

FIG. 5. A first return map for sitei5511, Xn11~511! vs Xn~511!, with
D052.9 andD523.0. 3000 points have been plotted and 5000 iterations
have been discarded as transient.

FIG. 6. Bifurcation diagrams for sitei5456 andD052.9 with ~a!: Eq. ~8!;
~b!: D]2xn( i ). For eachD value 200 points have been used and 5000 itera-
tions have been discarded as transient. In~b!, the dotted line in the middle is
due to the software of the plotting.
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correlation is also very small for the homogeneous attractor
since all the members of lattice converge to the fixed points.
However, the situation will be different for the period-2 and
chaotic states. There will be some correlations between the
lattices for these two cases. The appearance of the period-2
and chaotic states is due to the strong correlation between the
lattices.

In order to check the above arguments, we have calcu-
lated the spatial correlation function18

C~s!5
1

NtN
(
n51

Nt

(
j51

N

@xn~ j1s!2 x̄n#@xn~ j !2 x̄n#, ~27!

wheres is the distance between two spatial positions in the
system andNt is the total time steps andx̄n5hn is the mean
field. In Fig. 8, we have shown the results of the correlation
functionC(s) againsts for several different values ofD. For
the case ofD523.0, the correlation function is zero,C(s)
50, which means the lattices have no correlations between
each other@see curve~a! in Fig. 8#, while it is very small
when the diffusion coefficientD521 @curve ~b! in Fig. 8#.
These two cases show the situation we discussed above.
From the other two curves@~c! and ~d!# we can see that the
correlation is a function ofs. The correlation oscillates with
a large amplitude for small distance, while it decays for large
distance without loosing its oscillatory behavior with a finite,
but small, amplitude. Thus, the whole lattices do not evolve
to a fully disordered state but to a weak chaotic or periodic
one as we will discuss in the following section from the
dynamical characterization by the Lyapunov exponents.
There are some spatial orders in the system.

IV. DYNAMICAL CHARACTERIZATION

In order to characterize the above-mentioned spatiotem-
poral structures, we have also calculated the largest
Lyapunov exponent of our map lattices.23 We made such a
calculation by considering that the state of the multiplicative
diffusion coupled map lattices at timen is given by an
N-dimensional vector

yn5@xn~1!,xn~2!,...,xn~N!#. ~28!

Then the sequence of statesyk for k50,1,..., is generated by
the deterministic, discrete-time map, Eq.~8!. We calculate
the largest Lyapunov exponentL of this trajectory~the se-
quence! by using the method described in Ref. 24. In Fig. 9,
we showed the largest Lyapunov exponentL againstD.
From this figure, we found an excellent agreement with the

FIG. 7. Mean-square deviation of the mean field against system sizeN,
log2~MSD! vs log2(N), for five differentD values. 50 runs have been used
for the statistical averaging.

FIG. 8. The spatial correlation functionC(s) varying with the spatial sepa-
rating distances. 10 000 time steps were performed to eliminate transients,
and then 10 000 steps have been taken for the average. From the bottom to
the top with the values ofD: ~a! D523.0; ~b! D521.0; ~c! D51.1; ~d!
D51.6.

FIG. 9. The largest Lyapunov exponentL againstD for D052.9.

205W. Wang and H. A. Cerdeira: Behavior of map lattices

CHAOS, Vol. 6, No. 2, 1996
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

200.130.19.215 On: Tue, 28 Oct 2014 13:45:20



above discussion. When22.64,D,1.215, the largest
Lyapunov exponentL is smaller than zero,L,0, and the
attractor corresponds to a period-1 state, i.e., the diffusive
homogeneous state, and a period-2 state, respectively. For
1.215,D,1.42,L.0, the dynamical state of the multiplica-
tive diffusion coupled map lattices is a quasiperiodic one.
While L.0 for 1.42,D,3.2 and24.0,D,22.64, with
theseD values the lattice has a chaotic behavior~except
there are some periodic windows whereL,0!. However, for
24.0,D,22.64 the state relates to a so-called ‘‘weak
chaos’’ or local chaos for which some sites are chaotic and
some sites frozen to be zero, as well as some sites that are
still on the diffusive homogeneous attractor.

In Fig. 10, we showed the transition from a quasiperi-
odic to chaotic state for sitej5411. We call these attractors
~also Fig. 5! the local attractor or the first return map which
is plotted by usingxn11( j ) vs xn( j ) for a certain site. How-
ever, under the same condition we have also seen that the
local attractor of other site, sayj th, is the same as that of the
site i under equal iteration conditions~for those attractors
with D.22.64!. For the quasiperiodic attractor, the points
construct a continuous close curve while for the chaotic at-
tractor there are some points out of the close curve or some
points wrinkled together. To make sure this does not result
from the transient, we have discarded very long iterations for
these figures. From our previous discussion, we have seen

FIG. 10. The first return map for sitei5411,Xn11~411! vs Xn~411!. 3000
points have been used for the figure and 5000 iterations have been discarded
as transient withD052.9 and~a! D51.3; ~b! D51.44; ~c! D51.6.
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that the dynamical state is first a period-1 state. AsD is
increased, this period-1 state is unstable, and bifurcates into a
period-2 state, and then develops into a quasiperiodic one
@see Figs. 6 and 10~a!#. Furthermore, this quasiperiodic state
evolves into a chaotic state whenD is further increased@see
Figs. 10~b! and 10~c!#. This chaotic behavior is clearly oc-
curring via the transition from the quasiperiod. The route of
the transition from quasiperiodicity to chaos may be the one
described by Ruelle and Takens25 which has been observed
in many systems such as in fluid dynamics and also in our
previous study for a coupled dissipative oscillator, a Joseph-
son junction system, as in Ref. 26. However, a clear picture
would be carried out by checking whether there is a Hopf
bifurcation from a torus, which will be discussed in further
work.

V. CONCLUSION

In the past, most of the work on chaotic dynamics has
been concentrated on the temporal behavior of low-
dimensional systems. Many physical systems of interest,
however, as fluid flows, require the study of very high-
dimensional systems which have intricate spatial and tempo-
ral evolution properties. Models which might reveal, there-
fore, some of the fundamental properties of spatially
extended nonlinear systems are of great interest. Compared
to partial differential equations they certainly have the draw-
back that they cannot in general be associated to realistic
systems. But if one is interested in general mechanisms
rather than in specific realizations, then they have the essen-
tial advantage of being much easier to simulate due to the
discreteness in space and time. One such model is studied in
this work.

In this work, we are interested in exploring the diffusive
process of a model system from an initial random distribu-
tion and in finding the spatiotemporal structure. Actually,
diffusive homogenization gives rise to numerous processes
in solids, such as the onset of mechanical stresses, formation
and growth of phases, chemical reactions, change of the elec-
tric conductivity, etc. These processes are usually described
by using the macroscopic characteristics of the diffusive ho-
mogenization pictures, that is, the concentration profile and
motion of plane having a constant concentration.

In conclusion, we presented a study of the multiplicative
diffusion coupled map lattices with the coupling between the
neighboring elements only through the bifurcation parameter
of the mapping function in this paper. From an initially ran-
dom distribution, we found that there are several types dy-
namics for the spatiotemporal structures of the lattice:~i! the
diffusive homogeneous attractor,~ii ! the frozen phenom-
enon,~iii ! period-2 to chaotic state via quasiperiodic transi-
tion. We have discussed the dynamical and statistical behav-
ior of the system for such structures. To characterize the
dynamical behavior, we have used the largest Lyapunov ex-
ponent and the spatial correlation function for such a high-
dimensional system.

It is worth comparing the multiplicative diffusion
coupled map lattices with the ‘‘noisy’’ logistic map.27 For

the latter case, the bifurcation parameter ism5m01s for the
logistic mapxn115mxn(12xn). The noise makes that the
bifurcation point widens and chaos appears only after two or
three bifurcations. It has been shown by Sinha28 that the
effect of introducing parametric noise in an array of maps is
twofold: when the maps are uncoupled, and fluctuations are
spatiotemporal, i.e., the maps evolve under noise which var-
ies randomly from site to site at every step of time, they
observed statistical behavior in the mean field; on the other
hand when all the elements are subjected to the same tem-
poral random fluctuations, the mean field exhibits clear non-
statistical behavior. Similarly, although the multiplicative
diffusion coupled map lattices could be interpreted, in the
chaotic region, as an array of maps with spatiotemporal para-
metric noise, our results also show nonstatistical behavior in
the mean field. Therefore, it is completely different as we
have seen above for the multiplicative diffusion coupled map
lattices where the bifurcation parameter depends on a diffu-
sive term related to the states of three sites within the lattice.
It is this term that makes the dynamical behavior and the
statistical behavior of such map lattices very different.

In addition, the self-modulated diffusive process within
the multiplicative diffusion coupled map lattices shows a
special frozen effect by which the system is divided into
many domains. The appearance of these effects obeys a lin-
ear scaling with the diffusive parameterD. Within a domain,
the dynamical state is either chaotic or fixed depending on
how many lattices the domain has.

Finally, a more interesting extension of the present work
might be to generalize it to two dimensions. We expect that
the self-modulated diffusion process would result in some
interesting patterns of the domain walls, and also the system
can have a turbulent phase. It certainly deserves future study.
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