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We report a dynamical study of multiplicative diffusion coupled map lattices with the coupling
between the elements only through the bifurcation parameter of the mapping function. We discuss
the diffusive process of the lattice from an initially random distribution state to a homogeneous one
as well as the stable range of the diffusive homogeneous attractor. For various coupling strengths we
find that there are several types of spatiotemporal structures. In addition, the evolution of the lattice
into chaos is studied. A largest Lyapunov exponent and a spatial correlation function have been used
to characterize the dynamical behavior. 96 American Institute of Physics.
[S1054-150(06)00401-2

I. INTRODUCTION one-way coupling

Phenomena with spatiotemporal complexity are common
in nature and can be observed in fluid, chemical, optical, and
solid-state turbulence, pattern formation, neural networks, ) ] )
parallel computation problems, and so on. For example, turd/S0, models with global coupling have been studied,
bulent flows, chemical reactions with diffusion, spin wave
turbulence, and biological networks are some complex phe- N )
nomena which can display chaotic dynamics. These systems 9=J.§1 Fxa(1)), (4)
must be described by taking into account spatial variables,

and in recent years exciting studies on spatiotemporal chags

9o "and so on. For the logistic mapping functidns 1—Ax?, a
have been performed® Spiral waves are also presented in . ) . .
: . . ; . complex dynamical behavior has been found which contains:
some interesting biological phenomena as morphogenesis or . . . o T
in brain dynamics? In some cases they become unstableperIOd doubling of kink—antikink pattern; zigzag pattefos

giving rise to turbulenichaotiy behavior from an initially antiferro-like structures spatiotemporal intermittency: burst

well-defined spatially ordered state. A strange attractor caand laminar regions from complicated spatiotemporal pat-

be obtained then by calculating the time evolution of the?emS; and spatial amplification of_noi%é.llHowever,. all of
. ; : : . these models are too simple to discuss the dynamical behav-
given variables in concrete points of the space domain. On .
the other hand, many dynamical properties have been asor of a real system although one still hopes that some of the
. ' : . novel features are useful to understanding the behavior of

plored with coupled map lattice models. Phase transitions ;
L . thany different systems.
chaotic strings, intermittency, turbulence, and other phenom- : . .
11-13 In this work, we present a dynamical study of multipli-

ena have been particularly well characteri2et: . e ) ;
. : . cative diffusion coupled map lattices where the coupling be-
It is well known that some nonlinear continuous models : ! .
. e : . tween the elements is chosen only through the bifurcation
based on reaction diffusions can give spatial structures . : ; : .
arameter of the mapping function. Our aim here is to dis-

through Turing symmetry—breakmg .|nstab|||t|es and it Seems(?uss the diffusive process of the coupled map lattices from
an evident step to consider an equivalent approach based gn

the coupled map lattice theoH/.The coupled map lattice an initially random distribution state to a homogeneous one,

which has been studied intensively during the last years is and to study the spatiotemporal structures and the dynamical

. . : . . %ehavior of the system when the coupling parameter varies
dynamical system with a discrete time, discrete space, an . . o
ver some ranges. In addition, we are also interested in find-

continuous state. There are many one-dimensional models . L
: : Ing how the system develops into chaos when the coupling is
which can be given by

increased. The organization of this paper is as follows. In

g="f(xn(i)) = F(xa(i—1)); ()

Xn41(1)=af (Xa(i))+ Ba[ f(X,(1)),f(X,(i + 1)), Sec. Il, we presen_t th(_a model as well as a simple analytical
) treatment of the diffusive process. Then we demonstrate the
fxa(i=1))], @ spatiotemporal structures of the lattice and discuss the statis-

tical property and the spatial correlation in Sec. lll. In Sec.

where the functiong can, for instance, be chosen as the

diffusive coupling IV, to characterize the dynamical behavior of the lattice, we

calculate the largest Lyapunov exponent. Finally, we give
g=f(Xp(i+ 1))+ F(X,(i—1))—2 f(xy(1)); 2 the conclusions in the last section.
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Il. SPATIOTEMPORAL STRUCTURES OF THE lis, they proposed a phase-field-like mod#le phase being
MULTIPLICATIVE DIFFUSION COUPLED MAP the bacterial concentration and the field being the nutrient
LATTICES concentrationto describe the growth. The bacteria—bacteria
A. Model interaction is manifested as a phase-dependent diffusion con-

o . stant,D(¢), in their model:
The state of any element with discrete coordirjad¢ the

time momentn of the multiplicative diffusion coupled map d )

lattices (here we only consider the one-dimensional ¢ase —i ~D(#)Vie+g(d.c), (10)
characterized by the variablg(j). Evolution of the state of

the lattices as a function of the discrete time steis speci-  Which is a higher-dimensional version of Ef). In addition,

fied by the map diffusing coupling appears also in cellular automata models
) ) ] of some chemical and biological systems, such as the bio-
Xn+1(1) = F[%a(§), Dn(xa(i))], ®) logical populations with and without generation overlap if

whereD,,(x,(j))=Dy+Dd*x,(j) represents the bifurcation We consider a coupled model of multisubsystems. One
parameter of the mapping and the coupling between the elghould be aware, however, of the fact that the discretization

ments is given by of these continuous equations introduces new phenomena. In
N T , , particular, the chaotic states found in a lattice mapping may
IX%n(1)= 2 Xn(] + 1) +Xn(] = 1) =2%a(})], ® ot have the counterparts in the continuous space—time mod-

and Dy is the bifurcation parameter in the absence of cou£ls. Also, it should be noticed that the analysis of stability

pling, i.e.,D, corresponds to the bifurcation parameter with-Pased on a minimum wavelength, which will be presented in
out spatial correlation, anB is the coefficient of the cou- the next section, will not work for a continuous space dimen-

pling between the elements. sion.
For simplicity, we choose the mapping functib(x) to g piffusive homogeneous attractor and frozen
be the IOgiStiC map phenomenon
f(x)=ux(1-x). (7) Suppose an initial state with a random distribution, i.e.,

Xo(j) €(0,1) for (j=1,N) whereN is the size of the lattice.

In the case of £D,<3 after a number of iterations of Eq.

Xn+1(1) =[Do+Dd*Xn(j) IXn(D[ 1= Xn()], (8)  (8), the lattice may reach a homogeneous statediffusion

homogeneous statex,(j)=x* for (j=1,N) with the value
From Eq.(8), we can see that if the correlation in spaceﬁf D changing over SOme ranges. Th.ls en.tlr.e sta;pleddlff95|vef

is zero(D=0), the dynamical state of the lattices depends homlo ggneoltjs state Is an attractor smcehlt IS a ';:e poml'F 0

simply on the single logistic map with the well-known the lattice. However, one can expect that as the coupling

period-doubling route to chaos as the paramégris in- parameteD| increases, the local small deviation may de-
troy the stable state due to the influence of the coupling

creased. It means that the lattice consists of a set of indepe stween the elements. Now let us consider the randd of
dent elements. This is a trivial case in the present study. ) ge

However, as long aB #0, the state of the lattice not only andb.rhe -ste:jb|l|ty O.f trgsbstgte. Forllcgrtq|n_el?mem, tﬂe
depends on the coupling, but also on the valu®gf In this ?tad| ity 1 ?}erm'?e_ *y 't‘? sTrpha Ewatm;wn.frqm t ﬁ.
paper, we restrict ourselves to the caseDlL<3, for ex- Ixe _pomtx » Xn(])=X"+ €. Then by substituting this
ample, Dy,=2.9, for which value the logistic map equation into Eq(8), we have

Xn+1=DgX,(1—x,) has only a stable fixed point e =Ae +B(e+e (11)
x*=1-1/D,. However, in our coupled lattice, we will have " " " "

several types of spatiotemporal structures for different valuewith

of D due to the coupling between the elements as discussed

Thus, the model becomes

with the coupling parameter defined by Ef).

; D
in Sec.uB. . A=Dy(1—2x*)—Dx*(1—x*) B= - x*(1—x*).
This multiplicative diffusion coupled map lattice can be 2
used as a simple model for the reaction—diffusion process. It (12)
can be considered as a coarse discretion of the reactiong gptaining Eq.(11), we have only taken the first order of
diffusion equation, which governs the growing phase el In order to discuss the stability for various perturbations
IX ET% (all the wavelengths we introduce a Fourier transform
E:fW‘FU(X), 9 1 N
. el=— el 2m(ik/N) K . (13)
where the coefficienf=f[x(r,t)] depends on the state of "N & n

the systenx(r,t) and, thus, varies both in space and time,

andv(x) is the velocity of growth. Whew(x)=0 Eq.(9) and

describes the crystal growth for a supercooled liddith a N

recent paper Ben-Jaceh al!’ studied the interfacial pattern oK= 2 e i2m(IkIN) | (14)
formation during diffusion-limited growth oBacillus subti- "= n
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202 W. Wang and H. A. Cerdeira: Behavior of map lattices

with the normalization condition L —
1 N I -
N 21 e/2mlk=KINI= 5, . (15 ' 8 ]
Then we have - i
ak, 1 =Aak+2BaX cog2mk/N) = °r h 7
\s r 4
=[A+2B cog27k/N)]af. (16) o b 1
Thus the stability condition for the stax& =1—1/D reads 3 I 1
—1<A+2B coq2wk/N)<1. (17 ok i

From Eq.(17), we know that the stability is governed by the r T
two extreme behaviors: costk/N)=—1 whenk=N/2, the - 1
short wavelength case, and cos(@N)=1 for k=N, the - ]
long wavelength case. For the short wavelength behavior we - .

have 1 PR S S S IR S ST S N SR S SO SN SN TR T S
-3 -2 -1 0 1
|A—2B|<1. (18)
That is D
2D(Dy—1) FIG. 1. The stable range of the diffusive homogeneous attractdr pa-
—1<2-Do— D2 <1 19 rameter space fdD,=2.9 in Eq.(8).
0

and for the long wavelength case we get
homogeneous attractor, thatxg(j +1)=x,(j —1)=x* and

|A+28B|<1, (20) Xn(j)=0. This gives&zxn(j)=x* and from Eq(14), then we
which finally becomes have

1<Dy<3. (22) Do+ Dd?xp(j)=Do+Dx*=1. (24)
WhenD, is chosen to be 2.9, we have Equation(24) gives the condition of the onset rf(j) freez-

ing to zero,x,(j)=0. From Eq.(24), one gets
D,<D<D;, (22 M9 n(1) q.(24) 9
Dz=—-Dy=-2.9. 25
with D,=0.2213 andD,=—8.41. In addition to the stability 3 0 @9
condition Eq.(17), there is another implicit one: Finally, we conclude that the stable range of the diffusive
o homogeneous attractor B;<D <D, and wherD <D, the
1<Dy+Dax,(j)<3, (23

attractor is no longer stable and there is a frozen phenom-
since we only discuss the diffusive homogeneous state of thenon, some sites attain zero value. On the other hand, when
lattice. For 0<D<D,, Eq. (23) is always true. But for D>D,, the attractor is also unstable and there will be a
D,<D<0, in some ranges dd Eq. (23) fails. It will be  multistable state ofx,(j) since Eg.(23) changes into
shown that the lower limit value d, D, for the existence Do+ Dd%x,(j)>3 and this corresponds to the case of bifur-
of this diffusive homogeneous attractor is equat®.9, i.e.,  cation of the multiplicative diffusion coupled map lattices.
D3;=—2.9 (see following discussignIn our numerical itera-

tions, we find that there is an excellent agreement foljj;. NUMERICAL ITERATIONS AND SPATIO-

D,=0.2213, the upper limit value for the lattice with a dif- TEMPORAL STRUCTURES

fusive homogeneous attractor with the analytic result givenA Spai |
by Eq.(22). WhenD;<D<D, the state of the lattice con- "~ patiotemporal patterns

verges to the attractor,(j)=x* with (j=1,N). However, We have made a numerical iteration of E§) by using
when D,<D<D,, some sites have zero value of an initially random distribution okg(j) €(0,1) with j=1,N.
Xn(1),X,(j)=0. We call this state the frozen phenomenonThe size of the lattice iN=1000 and a periodic boundary
which is related to the breaking of Eq.(23), conditionx,(N+1)=x,(1) is also used in the present paper.
Do+Dd%x,(j)>1. The onset value db of the frozen phe- In Fig. 1, we have shown the time steps or the number of
nomenon is just the lower limit value & for the existence iterations,n, with which the lattice reaches the diffusive ho-
of the diffusive homogeneous attractor. The mechanism ofnogeneous attractok,(j)=x*, (j=1,N) versus the cou-
this frozen phenomenon can be understood as follows. Ipling coefficientD and the stable range of this attractor. The
order to determine the onset valuefof the freezing or the criterion for the diffusive homogeneous attractor was such
lower limit value ofD for the diffusive homogeneous attrac- that the attractor was reached with,(j +1)—x,(j)|<10™*

tor, we assume that there is a freezing of certain isite  for all sites of the lattice. From Fig. 1, we can see that when
zero,X,(j) =0, while the neighbors are still on the diffusive —2.64<D<0.2212, the finally stable state of the multiplica-

CHAOS, Vol. 6, No. 2, 1996
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FIG. 2. The diffusive homogeneous attractor wit=2.9 andD=—1.0. FIG. 3. A snapshot of the frozen phenomenon vidtj=2.9 andD =-3.0.

1000 points for each site. From Fig. 4, we can see that the
sites within a domain equally distant from the boundaries,
zeros, undergo the same dynamical behavior. This means
that the interaction model is spatially symmetric. In Fig. 5,
> we show a first return map for sife=511, we see that the
we only study the spatiotemporal structures f6#.0<D  gynamical state for this site is chaotic. The situation is the
<3.2 since we kept EG8) to be in(0,1). same for other sites either still on the diffusive homogeneous
In our iterations, we found that there are several types Ogttractor or on the chaotic statéii) When 0.2212D
the spatiotemporal structures, or patter(is:When L 284 <1215, the pattem is a period-2 state. A bifurcation diagram
<D<0.2212, the stable state is an attractq(j) =x*, the ¢4, sjte j =456 is shown in Fig. @). The period-2 state is
diffusive homogeneous attractor. Here we found that there i§;spie over a large range of tBevalues. For 1.215D <3.2,

an excellent agreement with the previous discussion for thgye pattern undergoes a transition from a quasiperiodic to a
upper limit value,D,=0.2213. But the lower limit value of 4 5tic statdsee Fig. 63)]. We will discuss this in the fol-

D is not equal t0o—2.9. This is because there is a more lowing section. In addition, in Fig.(6) we have also shown
sensitive effect of the fluctuation of_the system wH2rap- 1o same diagram for the coupling function E¢f),
proachesD,=—2.9 and the fluctuation makes the onset of

the frozen phenomenon occur earlier. An example of the
diffusive homogeneous pattern is shown in Fig.(i®. For
—4.0<D<—2.64, there exists a frozen phenomenon which

is shown in Fig. 3. We have seen that there are many sites
frozen to zero. The zeros divide the lattice into many do- sl
mains or subsystems and correspond to placing many insu-
lating walls in the lattice. These walls block the occurrence . Tll l"“““ll l "
of diffusion in the lattice since the boundary conditions for
ues, the number of the zerad, is stable, unchanged. For i
60 510

tive diffusion coupled map lattices is a diffusive homoge-
neous attractor, while fob<—-2.64 andD>0.2212, there
exists no stable attractor far up to 1¢. On the bottom of
this curve, the attractor is reached only after30. In Fig. 1,

‘dx.dat’ o

S
‘ ||l'w°°°°
Ogozé - -

: !
520 530 540

@

o

these domains are fixed to zero. In a larger rangP ofal- >

=
S

small values ofD|, M, becomes stable within a short num-
ber of iterations. However, wheéb| is larger, the number of
zeros stabilizes with a very long transient. The relation of the
number of zeros with the coupling coefficiebt is almost
linear, M~D. In addition, we have seen that within the do- 480 490 5

mains, the dynamical behavior is complex. Some domains i
are still on the attraCtOX”(J):X*’ some are chaotic. For FIG. 4. A part of the attractor for siteis=480—540 of the lattice with

example_, a small part of _the attractor is _ShOV\_’n in Fig. 4. TOp 2.9 andD=—3.0. 5000 iterations have been discarded and the follow-
get the figure, we have discarded 5000 iterations and plotteidg 1000 points have been plotted for each site of the lattice.

IS
e
T

o
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1 . . . . . . . 1 T T T T T T T T T T
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0.8 | R b
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— 0.5 B
©°
FIG. 5. A first return map for sité =511, X,,,(512) vs X,(511), with =
Dy=2.9 andD=-3.0. 3000 points have been plotted and 5000 iterations s | _
have been discarded as transient. %
0.5 F 4
D#°x,(j), for j=456. From this diagram, we can see that
due to the symmetry of the multiplicative diffusion coupled ' 1
map lattices, Eq(6), Fig. 6b) is also symmetric about zero.

The bifurcation structure of this figure is the same as Fig. ;5 =7 o 5 T 15 7 1 0 & .
6(a). Therefore, we can conclude that the complex dynamics
of the multiplicative diffusion coupled map lattices, when
D0:2_'9’ results from the term of diffusion, or the COUp“ng FIG. 6. Bifurcation diagrams for site=456 andD,=2.9 with (a): Eq. (8);
equatlon(G). (b): D#*x,(i). For eachD value 200 points have been used and 5000 itera-

tions have been discarded as transientb)nthe dotted line in the middle is
due to the software of the plotting.

B. Statistical property and spatial correlation

Furthermore, we have checked the fluctuations of the
coupled map lattices for different system sizes. We considenamical state of the multiplicative diffusion coupled map
the mean-square deviatidMSD) of the fluctuations of the lattices is a period-1 type and this state is not quasirandom,
mean field the result remains almost constantMishanges. It is noted

2 2 that for Fig. 7, we have only used 50 runs for the statistical

MSD=(h;) = (hn), (26) averaging for each value d. If we use more runs, the
wherehn=(1/N)E}\':lf[xn(j),Dn(xn(j))] is the mean field. curves are smoother, but the conclusion remains the same.
The reason to study these fluctuations is the following: when In usual coupled map lattices with a finite range of cou-
the system settles in a “turbulent” regime, its variables be-pling, the law of large numbers is satisfied at the fully dis-
have in a chaotic and seemingly uncoordinated way, and ibrdered state, because there exists a finite correlation length
may be possible that it mimics an ensemble of independer, such that the spatial correlation decays as expf).181°
random variables. If this were so, thepshould converge to  This is in contrast with the globally coupled c&8eOn the
a fixed valuen* asN—co, with fluctuations around this lim- other hand, there are some examples showing the spatial or-
iting value normally distributedCentral Limit Theorem der with temporal chaos, where the correlation does not de-
and with a dispersion that decays ag\L{law of large num-  cay; for instance, the pattern and domains in Ref. 21 belong
berg. That is, the mean-square deviation MSD would de-to this class. In a system with a local spatial interaction, the
crease as the system sidancreases. In Fig. 7, we show the breakdown of the law of large numbers implies the appear-
results for several different value 6f. It shows that as the ance of some kind of spatial ordeés??In our cases, for the
system size increases the mean-square deviation first dérozen state, the correlation between the lattices is small be-
creasesgexcept that oD =—1.0 which is independent on the cause there are many zeros which block the correlation. Al-
system sizeN) and then it saturates d$ increases. This though within the small domains the lattice may be corre-
implies that an ensemble of the maps does not have a statited together, the whole system is divided into many small
tical property’ For the case oD=—1.0, because the dy- subsystems and there are no correlations between them. The

CHAOS, Vol. 6, No. 2, 1996
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T T T FIG. 8. The spatial correlation functidd(s) varying with the spatial sepa-

rating distances. 10 000 time steps were performed to eliminate transients,
and then 10 000 steps have been taken for the average. From the bottom to
Log (N) the top with the values ob: (a) D=—3.0; (b) D=—1.0; (¢) D=1.1; (d)

2 D=1.6.

o
[5,]
-
[=]

FIG. 7. Mean-square deviation of the mean field against systemNsize
log,(MSD) vs log,(N), for five differentD values. 50 runs have been used
for the statistical averaging. IV. DYNAMICAL CHARACTERIZATION

In order to characterize the above-mentioned spatiotem-
poral structures, we have also calculated the largest
Lyapunov exponent of our map latticEsWe made such a
correlation is also very small for the homogeneous attractogalculation by considering that the state of the multiplicative
since all the members of lattice converge to the fixed pointsdiffusion coupled map lattices at time is given by an
However, the situation will be different for the period-2 and N-dimensional vector
cha_lotlc states. There will be some correlations betweeq the Y=[X(1),%(2), .. X (N) . (28)
lattices for these two cases. The appearance of the period-2
and chaotic states is due to the strong correlation between tiden the sequence of statgsfor k=0,1,..., is generated by

lattices. the deterministic, discrete-time map, E&). We calculate
In order to check the above arguments, we have calcithe largest Lyapunov exponerit of this trajectory(the se-
lated the 5patia| correlation functi% quence by USing the method described in Ref. 24. In Flg 9,

we showed the largest Lyapunov exponehntagainstD.

Ny From this figure, we found an excellent agreement with the

1 N - _
C(s)=c~ 2 2 [Xa(j+8) = Xal[Xa(i)—Xnl, (27)
NtN n j=1

=1

0.001 ——r————— T

wheres is the distance between two spatial positions in the i 7
system and, is the total time steps and,=h,, is the mean [
field. In Fig. 8, we have shown the results of the correlation
functionC(s) againsts for several different values @. For
the case oD =-3.0, the correlation function is zer§(s)
=0, which means the lattices have no correlations between
each othefsee curve@) in Fig. 8], while it is very small

4
g
)
a
& 0.0005 I
ol
[£3] .
when the diffusion coefficiend =—1 [curve (b) in Fig. 8]. B
These two cases show the situation we discussed above. g o M |
a, | \J
©
>
—

From the other two curvelgc) and(d)] we can see that the
correlation is a function o§. The correlation oscillates with

a large amplitude for small distance, while it decays for large
distance without loosing its oscillatory behavior with a finite,
but small, amplitude. Thus, the whole lattices do not evolve

AT S SN R ST VOV WUUE SN ORI SN S N SR SR
to a fully disordered state but to a weak chaotic or periodic - -2 0 2 4
one as we will discuss in the following section from the D
dynamical characterization by the Lyapunov exponents.
There are some spatial orders in the system. FIG. 9. The largest Lyapunov exponehtagainstD for Dy=2.9.
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5": FIG. 10. The first return map for siie=411, X, (411 vs X,,(411). 3000
< points have been used for the figure and 5000 iterations have been discarded
> 0.5F i as transient wittDy=2.9 and(a) D=1.3; (b) D=1.44;(c) D=1.6.
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above discussion. When-2.64<D<1.215, the largest In Fig. 10, we showed the transition from a quasiperi-

Lyapunov exponeni\ is smaller than zeroA<0, and the odic to chaotic state for site=411. We call these attractors
attractor corresponds to a period-1 state, i.e., the diffusivéalso Fig. 5 the local attractor or the first return map which
homogeneous state, and a period-2 state, respectively. Fixplotted by using,,, 1(j) vs X,(j) for a certain site. How-
1.215<D<1.42,A=0, the dynamical state of the multiplica- ever, under the same condition we have also seen that the
tive diffusion coupled map lattices is a quasiperiodic onelocal attractor of other site, sgyh, is the same as that of the
While A>0 for 1.42<D<3.2 and —4.0<D<-2.64, with  sitei under equal iteration conditiondor those attractors
theseD values the lattice has a chaotic behaviexcept with D>—2.64). For the quasiperiodic attractor, the points
there are some periodic windows whete:0). However, for  construct a continuous close curve while for the chaotic at-
—4.0<D<-2.64 the state relates to a so-called “weaktractor there are some points out of the close curve or some
chaos” or local chaos for which some sites are chaotic angboints wrinkled together. To make sure this does not result
some sites frozen to be zero, as well as some sites that af®m the transient, we have discarded very long iterations for
still on the diffusive homogeneous attractor. these figures. From our previous discussion, we have seen
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that the dynamical state is first a period-1 state.Ads  the latter case, the bifurcation parametepis uy+ o for the
increased, this period-1 state is unstable, and bifurcates intolagistic mapx,, ;= uX,(1—X,). The noise makes that the
period-2 state, and then develops into a quasiperiodic onkifurcation point widens and chaos appears only after two or
[see Figs. 6 and 18)]. Furthermore, this quasiperiodic state three bifurcations. It has been shown by Stfhehat the
evolves into a chaotic state whénis further increasefsee  effect of introducing parametric noise in an array of maps is
Figs. 1@b) and 1@c)]. This chaotic behavior is clearly oc- twofold: when the maps are uncoupled, and fluctuations are
curring via the transition from the quasiperiod. The route ofspatiotemporal, i.e., the maps evolve under noise which var-
the transition from quasiperiodicity to chaos may be the onées randomly from site to site at every step of time, they
described by Ruelle and Takérsvhich has been observed observed statistical behavior in the mean field; on the other
in many systems such as in fluid dynamics and also in ouhand when all the elements are subjected to the same tem-
previous study for a coupled dissipative oscillator, a Josephporal random fluctuations, the mean field exhibits clear non-
son junction system, as in Ref. 26. However, a clear picturestatistical behavior. Similarly, although the multiplicative
would be carried out by checking whether there is a Hopfdiffusion coupled map lattices could be interpreted, in the
bifurcation from a torus, which will be discussed in further chaotic region, as an array of maps with spatiotemporal para-
work. metric noise, our results also show nonstatistical behavior in
the mean field. Therefore, it is completely different as we
have seen above for the multiplicative diffusion coupled map
lattices where the bifurcation parameter depends on a diffu-
In the past, most of the work on chaotic dynamics hassive term related to the states of three sites within the lattice.
been concentrated on the temporal behavior of lowdt is this term that makes the dynamical behavior and the
dimensional systems. Many physical systems of intereststatistical behavior of such map lattices very different.
however, as fluid flows, require the study of very high- In addition, the self-modulated diffusive process within
dimensional systems which have intricate spatial and tempdhe multiplicative diffusion coupled map lattices shows a
ral evolution properties. Models which might reveal, there-special frozen effect by which the system is divided into
fore, some of the fundamental properties of spatiallymany domains. The appearance of these effects obeys a lin-
extended nonlinear systems are of great interest. Comparedr scaling with the diffusive parametr Within a domain,
to partial differential equations they certainly have the draw-the dynamical state is either chaotic or fixed depending on
back that they cannot in general be associated to realistikow many lattices the domain has.
systems. But if one is interested in general mechanisms Finally, a more interesting extension of the present work
rather than in specific realizations, then they have the essemight be to generalize it to two dimensions. We expect that
tial advantage of being much easier to simulate due to théhe self-modulated diffusion process would result in some
discreteness in space and time. One such model is studied iinteresting patterns of the domain walls, and also the system
this work. can have a turbulent phase. It certainly deserves future study.
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