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We study underdamped Josephson junction series arrays that are globally coupled through a
resistive shunting load and driven by an rf bias current. They can be an experimental realization of
many phenomena currently studied in globally coupled logistic maps. We study their spatiotemporal
dynamics and we find coherent, ordered, partially ordered, turbulent, and quasiperiodic phases. The
ordered phase corresponds to giant Shapiro steps in the IV characteristics. In the turbulent phase
there is a saturation of the broad-band noise for a large number of junctions. This corresponds
to a breakdown of the law of large numbers as seen in globally coupled maps. Coexisting with
this phenomenon, we find an emergence of pseudosteps in the IV characteristics. This effect can
be experimentally distinguished from the true Shapiro steps, which do not have broad-band noise
emission. We study the stability of the breakdown of the law of large numbers against thermal
fluctuations. We find that it is stable below a critical temperature T.;. A measurement of the
broad-band noise as a function of temperature 7" will show three different regimes: below T.; the
broad-band noise decreases when increasing T, and there is turbulence and the breakdown of the
law of large numbers. Between T.; and a second critical temperature T.2 the broad-band noise is
constant and the dynamics is dominated by the chaos of the individual junctions. Finally above T.,
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all the broad-band noise is due to thermal fluctuations, since it increases linearly with T'.

I. INTRODUCTION

Josephson junction arrays are mesoscopic devices
which can be fabricated with very specific properties
and geometries.! In the last years they have become a
good laboratory for the study of nonlinear dynamical sys-
tems with many degrees of freedom.2"'2 Moreover, they
have potential applications as high frequency coherent
power sources,'®14 parametric amplifiers, and voltage
standards.’® One of the prototype models of nonlinear
systems with many degrees of freedom is coupled logis-
tic maps.!® In particular, globally coupled maps (GCM’s)
have been studied as a mean-field-type extension of these
models.'®17 As a consequence of the interplay between
temporal chaos and space synchronization, the GCM’s
exhibit coherent, ordered, partially ordered, and turbu-
lent phases.!® In the turbulent phase, a surprising re-
sult was found by Kaneko:'® Even when spatial coher-
ence is completely destroyed, a subtle collective behav-
ior emerges. This was seen as a violation of the law of
large numbers!® 24 as a function of the number of logistic
maps.

We have made contact between these abstract models
of GCM’s and one-dimensional Josephson junction se-
ries arrays (JJSA’s).1112 In this system, the role of the
logistic maps is played by underdamped single Joseph-
son junctions, which are known to show chaotic behavior
when they are driven by a rf bias current.25 22 The global
coupling is achieved by connecting this junctions in series
but with a common resistive shunting load. Therefore,
the two conflicting trends of GCM are present: destruc-
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tion of coherence due to the chaotic divergences of the
individual junctions and synchronization through global
averaging of the common shunting load. We have found!!
that the breakdown of the law of large numbers can be
observed in rf-driven underdamped JJSA’s, and that it is
stable for temperatures below a certain T,;.'2 Moreover,
we find that whenever the JJSA shows a breakdown of
the law of large numbers, pseudo Shapiro steps emerge
in the IV characteristics of the JJSA.!! This last effect
is a result which does not result directly from previously
known phenomena in GCM’s. In this paper we discuss
these phenomena in more detail, and we present a thor-
ough analysis of the different dynamical regimes of the
JJSA (not only the turbulent phase).

Josephson junction series arrays coupled by an external
shunting load have been extensively studied before.?™5
But in these studies the arrays were driven by a dc cur-
rent. Since a single Josephson junction with a dc bias
never shows chaos, the many interesting chaotic phenom-
ena studied in Refs. 2-5 are a consequence of the high
dimensionality of the system. On the other hand, the
dynamics of rf-driven two-dimensional Josephson junc-
tion arrays has been of great interest in recent years, both
experimentally® and theoretically.”"® Much of the interest
has concentrated in the study of giant Shapiro steps and
coherent vortex states. Some investigations of chaos and
turbulence on two-dimensional Josephson junction arrays
have also been done recently.®>!® In particular Bhaga-
vatula et al.l® have studied chaos in two-dimensional rf-
driven Josephson junction arrays. The main difference
between the JJSA and the two-dimensional Josephson
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junction arrays simulated in Ref. 10 is that in the last
case there is a locally coupled dynamics instead of the
global coupling of the JJSA. Therefore, a breakdown of
the law of large numbers is not likely to be found in their
case.

The paper is organized as follows. In Sec. II we review
the dynamics of chaos in a single Josephson junction,
showing simulations for the parameters that will be used
for the JJSA in the rest of the paper. In Sec. III we intro-
duce the dynamical equations for the JJSA and compare
them with the GCM dynamics. In Sec. IV we present
a thorough study of the spatiotemporal dynamics of the
JJSA for different coupling strengths and bias currents.
In particular we identify the various dynamical phases
and their consequences in the IV characteristics of the
JJSA. In Sec. V we investigate the breakdown of the law
of large numbers in the turbulent phase of the JJSA. In
Sec. VI we discuss the effect of thermal noise on the tur-
bulent phase of the JJSA. Finally in Sec. VII we present
our conclusions and discuss possible experimental conse-
quences of our findings.

II. CHAOS IN SINGLE JOSEPHSON JUNCTIONS

Before considering the JJSA, let us review the dynam-
ics of a single Josephson junction. The supercurrent flow-
ing through a Josephson junction is

I;=1I.sin¢ |, (1)

where ¢ is the phase difference of the complex order pa-
rameters in the two superconductors of the junction, and
I. is the maximum current that can flow through the
junction. The voltage drop across the junction is

ki d

= 2edt @)

In real junctions one has to take into account that there is
always a source of dissipation and that the junction also
works as a capacitor. This is usually described with the
resistively shunted junction (RSJ) model.?° In a current-
biased junction, the bias current I(¢) flows in parallel
with an ideal Josephson junction, a resistor r, and a ca-
pacitor C' so that the total current is given by

vV dV_ . A dp Chd?¢
) =L+ -+ Cgp =losind + 5 0 + e a2 -
(3)

It can be written in reduced units, with currents nor-
malized by the critical current, i = I /I, voltages by rl,,
v = V/rl., and time normalized by the plasma frequency
2el,

wp = 50 Wwpt =T, as

¢ +9é +sing =i(r) (4)
where g = (2eC§'2Ic )12 = 1/ﬁc1/2, with 3. the McCumber
paranmei:er.29

One of the responses that can be measured experimen-
tally are the I'V characteristics of the Josephson junc-
tions, which is the time-averaged voltage (v(7)) = v as
a function of the time-averaged bias current (i(7)) = 1.
When the bias current I(t) is time independent and the
junction is overdamped (C = 0), Eq. (3) can be solved
analytically.3® In this case, the time-averaged voltage is
v=+vi2—1fort>1and v=0for:<1.

When the junctions are rf biased, with I(¢t) = I4. +
I¢sin(w,¢t), they show Shapiro steps.31:30:25728 These
are plateaus in the I'V characteristics where the voltages
are quantized at

hwrf
Vnzn?, n=1,2,3,... 5 (5)
or in reduced umits v = ngQys, with Qi = wir/wy.

They correspond to phase-locked states, which are pe-
riodic solutions in resonance with the rf current, such
that ¢(7 + 27/Qy¢) = ¢(7) + 27n. In the underdamped
case g < 1, there are also subharmonic Shapiro steps for
which v = > ¢Q.¢. They correspond to periodic solutions
of the type ¢(7 + 2nm /Qy¢) = ¢(7) + 27n.

Chaotic behavior can occur in underdamped junctions
(g < 2) driven by a rf current below the plasma fre-
quency (€;s < 1).28 In these chaotic solutions the junc-
tion switches pseudorandomly between unstable, over-
lapping Shapiro steps.2> 28 It has also been shown that
this dynamical system behaves as a circle map in certain
cases.?® Here, we study the chaotic nature of the solu-
tions by computing the maximum Liapunov exponent A
of the dynamical system of Eq. (4). Experimentally,?”
most chaotic modes can be observed as broad-band noise
in the power spectrum of the voltage. The power spec-
trum is computed as S(w) = %] Jo v(r)e* dr|?. In the
presence of broad-band noise, the low-frequency part of
the spectrum approaches a constant, So = lim,,_,¢ S(w).

Let us study one example of Josephson junctions in
which there are periodic solutions (Shapiro steps) and
chaotic solutions. We choose a case with g = 0.2, Q¢ =
0.8, and i, = 0.61. We integrate the dynamical system
of Eq. (4) using a fourth-order Runge-Kutta method with
fixed step AT = T'/160, with T' = 27 /Q,¢ the period of
the rf drive, and we iterate the dynamics for times as
long as 10247, after discarding the first 256 periods. For
some particular cases, we have checked our results with
AT = T/320 and integration time 20487

In Fig. 1 we show the average voltage v/g€,¢, the Li-
apunov exponent A, and the broad-band noise S as a
function of i4.. We distinguish four different regimes as
a function of i¢4.. (i) There are periodic solutions, with
A < 0 and Sy — 0. They appear either below the criti-
cal current (igc < 7. = 0.036), where there is no average
dissipation v = 0, or at the Shapiro steps, which in this
case are at voltages %gQ,f (0.256 < igc < 0.428) and
39 (0.476 < 34, < 0.508). (ii) There are chaotic so-
lutions in the region between i, and the step at % g
(0.036 < ig. < 0.256), for which A > 0, Sy finite. In this
region some periodic “windows” are also seen (notably
for voltages g€ and 1g€Qyy). (iii) For high currents
(¢dc > 0.508), where there is a linear resistive behavior
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FIG. 1. (a) IV characteristics for one single Josephson
junction with g = 0.2, Q¢ = 0.8, i;r = 0.61. We have nor-
malized the average voltage as V = v/gQ:¢. (b) Maximum
Liapunov exponent A as a function of ¢4c. (c¢) Low frequency
limit of the power spectrum Sy as a function of iq.. Dynamical
phases: p, mostly periodic solutions; q, mostly quasiperiodic
solutions; ¢, mostly chaotic solutions.

in the I'V characteristics, we find quasiperiodic solutions
(also subharmonics with high m are possible here), for
which A = 0, Sp small. (iv) Finally, between the two
steps, there is a region (0.428 < i4. < 0.476) where ei-
ther periodic solutions with v = % g€2;¢, quasiperiodic so-
lutions, or chaotic solutions can exist, depending on the
initial conditions. In this region the IV characteristics
show hysteresis. Note that we have deliberately chosen a
case with few stable Shapiro steps. For this set of param-
eters, most of the Shapiro steps are unstable and over-
lapping, giving place to a wide region of chaotic states.

III. JOSEPHSON JUNCTION SERIES ARRAYS

A. Dynamical equations

Let us now consider an underdamped JJSA shunted
by a resistive load,?32? and subjected to a rf bias current
Ip(t) = Iac + Issin(w,st). This consists of a circuit
where there are IV junctions connected in series one after
another, and there is a common resistive load in parallel
to all the junctions (see Fig. 2). The dynamical behavior
of each one of the Josephson junctions is described with
the RSJ model of Eq. (3),
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e e i [T

FIG. 2. Schematic circuit of a Josephson junction series
array with a resistive load Rr and external current bias Ip.
Each Josephson junction, with critical current I, is modeled
including a shunt resistance r and a capacitance C.

. h dog
1081n¢>k + 5;? +

Ch o _
2¢e dtz2

(6)

where I is the current flowing through the circuit branch
with the junctions in series. On the other hand, the com-
mon load satisfies

N N o:4 b
— - Rbdhetia.l
Rplp =) Vi=) o5 —°, (7)
k=1 k=1
where Ry, is the resistance of the load and I, is the cur-
rent flowing through the load. The bias current divides
between the load and the junctions in series,

IB(t) = Igc + I¢ sin(w,.ft) =Is+1Iy . (8)

Therefore, the governing equations of the JJSA in re-
duced units are

N

. . . o ; . .

¢k + g¢k + sin d’k + N E g¢] = %dc + Uf Sln(QrfT) )
j=1

(9)

where ¢y, is the superconducting phase difference across
the junction & and £k = 1,...,N. Here 0 = % rep-
resents the strength of the global coupling in the array.
Note that, when o = 0, Eq. (9) reduces to a set of N
independent junctions. Here, the voltage per junction
v(t) = ¥ XUk = % S 9Pk acts as a mean field vari-
able.

B. Comparison with globally coupled logistic maps

One of the simplest models among globally cou-
pled dynamical systems are the globally coupled maps
(GCM’s).18 They were originally introduced as a mean
field extension of coupled map lattices.'> The GCM’s are
given by
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N
Tnia(i) = (1= f(@n(@) + 5 S (@a(),  (10)

where z,(2) is a continuous variable z(z) at discrete time
n,withi = 1,2,..., N labeling sites in a lattice, and e is a
measure of the coupling strength. The mapping function
f(z) is chosen such that it shows one-dimensional chaos.
The simplest attractor of the GCM is the coherent at-
tractor for which z,(¢) = z, for all 7, and the system
reduces to the single map z,+1 = f(z,). The most stud-
ied case is the well-known logistic map f(z) = 1 — az?.
Also the same phenomena has been studied for the tent
map,'®!® f(z) = a(} — |z — ), and for globally coupled
circle maps!”3 as

K
Tpt1(l) = zp + 3 sin[2nz, (2)] + Q

+2_7_:—-N_ Zsin[27rzn(j)]- (11)

The main ingredients of GCM’s are that (i) the in-
dividual elements are chaotic and (ii) there is an addi-
tive coupling with the same weight for all the elements.
The first condition means that the GCM is reduced to a
chaotic one-dimensional system either for N = 1 (single
map) or for € = 0 (ensemble of uncoupled maps), which
coincides with the coherent attractor, z,4+1 = f(z,). As
a consequence, the system has two conflicting tendencies,
random behavior and incoherence because of the chaotic
instabilities of the single elements, and synchronization
because of global averaging by the coupling term.

The JJSA studied here satisfies both conditions. To
make the analogy more obvious, the dynamical equations
(9) can be rewritten as

bk + (§ — €) P + sindr + — tdc + tre sin(Qee7)

Z¢a

(12)

with § = (1 + 0)g and € = og. Either in the limit e = 0
or N =1, it reduces to

Bo + Go + sin o = iqc + der SIn(Qee7) (13)

which is also the coherent attractor of the JJSA, ¢ (t) =
¢o(t). This corresponds to the dynamics of a single
Josephson junction as given by Eq. (4). As discussed
in Sec. II in the underdamped case and with a rf bias it
can have chaotic behavior. Therefore, the only difference
with GCM’s is that in the JJSA the time is a continu-
ous variable and the dynamics is governed by differential
equations instead of maps. Note that previously studied
JJISA’s (Refs. 2-5) do not follow condition (i). They have
been studied only for dc current bias (i, = 0), in which
case the single-junction equation does not have chaos.
Therefore, their dynamics can not be compared directly
with GCM’s. In this case the many interesting chaotic
phenomena observed arise only from the high dimension-
ality of the system.

A closely related system is globally coupled oscillators
(GCO?s).33:34 They are described by equations like

=w+g—=

er, 43) . (19)

where ¢; is a phase, and the coupling I" is 27 periodic.
These systems have a continuous time and in that sense
they are similar to the JJSA. In the absence of coupling,
g = 0, each unit is moving around its limit cycle at fre-
quency w. The GCO’s are, therefore, similar to the JJSA
with a dc current bias only,2™ for large currents Iy, > Iy
in the overdamped limit. This is because in that case
the single-junction dynamics reduces to the limit cycle
¢ =w = 2erly./h.

An important concept in both GCM’s and GCO’s is
“clustering”.1633 This means that even when all the ele-
ments (i.e., the junctions in the JISA) are identical, the
dynamics can break into different clusters, each of which
consists of fully synchronized elements. After the system
has fallen in an attractor, we say that i, j are in the same
cluster if z,(2) = z,(j). An attractor can be character-
ized by the number of clusters it has, n., and the num-
ber of elements of each cluster (M7, Mz,...,M,_). Four
types of attractors have been identified in GCM’s:16 (i)
the coherent attractor ng = 1; (ii) attractors with few
clusters, n, < N; (iii) attractors with a large num-
ber of clusters, n, ~ N, and large M; [for example,
na = N/2 + 1,(N/2,1,1,...,1)]; (iv) attractors with
a large number of clusters, n. ~ N and all M; small
(M; ~ 1,2). We will use this concept of clustering in the
next section in our study of the dynamical regimes of the

JISA.

IV. SPATIOTEMPORAL CHAOS
AND IV CHARACTERISTICS

Let us study the spatiotemporal behavior of the JJSA
for different values of 73, and o. To compare with the
single-junction case presented in Sec. II, we choose g =
0.2, Qi = 0.8, and i,y = 0.61. We work with fixed g,
instead of g, in order to have in all the cases the same
coherent attractor. We integrate the dynamical system
of Eq. (9) with the same numerical procedure as in the
previous section. For each run we used different sets of
random initial conditions {¢%(0), #x(0)}.

In Figs. 3, 4, and 5 we show our results for different
values of the coupling, o = 0.05, 0 = 0.2, and o = 0.8,
respectively, and fixed size N = 128. First, we plot the
v characterlstlcs i.e., the average voltage per junction,
v= 5 E (99;), vs the dc bias i4c, in Figs. 3(a), 4(a),
and 5(a). Note that v, which is the quantity that can
be measured directly in the experiments, is also the time
average of the “mean field,” v(7) = # E g¢J, in the
globally coupled dynamical equations. At the same time,
we analyze the spatiotemporal behavior of the solutions
for each bias i4.. In what regards the temporal behavior,
we plot the maximum Liapunov exponent A of the system
in Figs. 3(b), 4(b), and 5(b). In what regards the spatial
behavior, we plot the number of clusters, n. in Figs. 3(c),
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FIG. 3. (a) IV characteristics for a Josephson junction se-
ries array with § = 0.2, Q¢ = 0.8, i;y = 0.61, N = 128
junctions, and coupling o = 0.05. The average voltage per
junction is normalized as V = ¥/gQs. (b) Maximum Lia-
punov exponent A as a function of igc. (c¢) Number of clusters
nq as a function of i4c.. C, coherent phase, which can have
either periodic (p) or quasiperiodic (q) solutions; O, ordered
phase; PO, partially ordered phase; T, turbulent phase; Q,
quasiperiodic phase.

4(c), and 5(c). The criterion for clustering is that two
sites 7,7 belong to the same cluster if ¢; = ¢; + 27n,
with n an integer. We find five different phases.

(a) Turbulent phase: all the attractors have many clus-
ters, nq ~ N, and their temporal behavior is chaotic
A > 0. An example of this case is shown in Fig. 6(a).
There we plot the time evolution for each site, showing
the points in time where each phase ¢; hits 27n. We see
that all the junctions follow a different time evolution,
and none of them is periodic. The chaotic behavior is also
evident in the power spectrum of the voltage v(r) shown
in Fig. 7(a). Besides the peaks corresponding to the driv-
ing frequency wis, the spectrum is broad and tends to a
constant at zero frequency. The turbulent phase appears
always between the critical current i, and the 1/2-integer
Shapiro step in the I'V characteristics, for this choice of
parameters. Also for high values of o it can be found at
higher bias currents (see Fig. 5).

(b) Ordered phase: the attractors have few clusters,
and they are periodic in time. This phase corresponds
to Shapiro steps in the IV characteristics. In Fig. 6(b)
we show an example for a 1/3-integer Shapiro step
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FIG. 4. The same as in Fig. 3 but for coupling o = 0.2.
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FIG. 5. The same as in Fig. 3 but for coupling o = 0.8.
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(v/g = 3Sus). We see that there are ng = 3 clusters
evenly distributed, each cluster oscillating with period
3T (T = 2m/wye). This is also evident in the power spec-
trum shown in Fig. 7(b), where there are subharmonic
peaks at frequencies w = Zwrs. Another example, cor-
responding to a 1/2-integer Shapiro step (v/g = 3Qu),
is shown in Fig. 6(c) and its corresponding power spec-
trum in Fig. 7(c). In this case there are n = 2 clusters,
each one of them oscillating with period 27. Therefore
there are subharmonic peaks in the power spectrum at
frequencies w = Zw;s. We always find that for p/g-integer
Shapiro steps (v/g = §Q,f) there are n. = q clusters
with period ¢T. In particular, for the case of integer
steps (¢ = 1), they fall in a coherent attractor (for ex-
ample, in Fig. 3 for o = 0.05 in the step at v/g = 3Q,s).
We mention that similar periodic attractors with a small
number of clusters have also been found in globally cou-
pled oscillator systems.3%:34

(c) Partially ordered phase: depending on the ini-
tial conditions, there are attractors with few clusters or
with many clusters unevenly distributed [type (iii) at-
tractor in Sec. III(b)]. Let us discuss some examples.
In Fig. 6(d) we show a case with n, = 4 clusters and
M; = (77,34,12,5), which is temporally periodic since
A < 0. Two of the clusters (M, = 77, M, = 34) are
in a periodic state with v/g = %Q,f and the other two

(M3 = 12, M4 = 5) in a periodic state with v/g = 2.5Qs.
The power spectrum in Fig. 7(d) shows subharmonic
peaks. Another case is shown in Fig. 6(e), with ng = 4
clusters but temporally chaotic A > 0. There are two
periodic clusters that correspond to v/g = %Q,f, and the
other two are chaotic. The corresponding power spec-
trum in Fig. 7(e) shows both subharmonic peaks and
broad-band noise. In Fig. 6(f) we show a case with
ne = 80 clusters (ng ~ N = 128), which is temporally
chaotic (A > 0). The clusters are unevenly distributed
M; = (26,24,1,1,1,...,1). The first two large clus-
ters correspond to a periodic solution with v/g = %Q,f,
whereas the other 78 single clusters are chaotic, but with
average voltage v/g =~ 2.5Q;¢. The last example of this
phase is shown in Fig. 6(g). There are n. = 4 clusters
unevenly distributed M; = (114,10,3,1) and the max-
imum Liapunov exponent is A = 0. The large cluster
M; = 114 corresponds to a quasiperiodic solution, and
the small clusters correspond to periodic solutions with
v/g = 3¢ and with v/g = 2Q. Their power spec-
trum, shown in Fig. 7(g), has both subharmonic peaks
and quasiperiodic peaks at incommensurate frequencies.
We found the partially ordered phase with all this differ-
ent type of solutions mostly at large currents above the
big 1/2-integer Shapiro step, for this case.

(d) Coherent phase: here all the junctions oscillate
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(a)

FIG. 7. Power spectra S(w)
of the voltage v(7). For a sys-
tem with g = 0.2, Q;f = 0.8,
i = 0.61, N = 128 junc-
tions, and coupling ¢ = 0.2.
(a) For a turbulent state,
2ac = 0.084. For ordered states:
(b) iac = 0.160, 1/3-integer

Shapiro step; (c) %ac = 0.280,
1/2-integer Shapiro step. For
partially ordered states, (d) iac
= 0.378, (e) iac = 0.390, (f)
idc = 0.404, (g) ‘dc
= 0.460. (h) For a coherent
] state, tac = 0.520.

m/wrf
with the same phase, n, = 1. It occurs for periodic

solutions either below the critical current (v = 0) or at
integer Shapiro steps (v/g = n€,s) and for quasiperi-
odic solutions at large currents. This last case is shown
in Fig. 6(h), and its corresponding power spectrum in
Fig. 7(h), where there are peaks at incommensurate fre-
quencies.

(e) Quasiperiodic phase: the attractors have a large
number of clusters, n, ~ N, but their behavior is
quasiperiodic in time (A ~ 0). This phase appears at
very large currents, when the I'V curve is practically lin-
ear. A similar phase has been found in globally coupled
circle maps!? (but not in logistic GCM’s). It has been
suggested'” to correspond to the phenomena of “attrac-
tor crowding”.?

We have calculated the probability distribution in time
of the phases in a fixed site j. This is the probability
Py(¢{™) with ¢\ = ¢;(to + nT) for fixed j and all the
realizations of n. This is shown in Fig. 8(a). Since we cal-
culate the probability only every period of the rf bias, the
periodic attractors with period ¢T show ¢ peaks in P,
and the chaotic and quasiperiodic states show a broad
distribution. Also in Fig. 8(b) we have calculated the
probability distribution in space P,(¢;(t)) for a given
time t. Therefore, a distribution P, with a few peaks
corresponds to an attractor with n. = number of peaks,

G)/w"

whereas a broad distribution corresponds to a turbulent
attractor. Both plots correspond to o = 0.2 and show the
distributions as a function of iq.. We see that the main
qualitative difference in the temporal and spatial distri-
butions is in the partially ordered phase. In the ordered
phase both have the same peaks (periodicity=number of
clusters), and in the turbulent phase both have broad
distributions (but they do not coincide).

Finally, in Fig. 9 we show a complete phase diagram in
the o vs iqc plane. We see that in general the tendency for
increasing o is that the turbulent phase reduces in size,
the ordered phase (1/2-integer Shapiro step) displaces to
lower i4. values, and the partially ordered phase grows in
size. For large o a new turbulent phase develops in the
middle of fhe partially ordered phase. We do not find
that, as in GCM’s, the coherent phase is the dominant
attractor in the large coupling limit. Instead, there is
always a rich structure with all the five phases present.

V. BREAKDOWN OF THE LAW
OF LARGE NUMBERS AND PSEUDOSTEPS

Let us now study the turbulent phase in detail. As
discussed in the previous section, in this phase the time
evolution is chaotic (A > 0) and practically all the junc-
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FIG. 8. Probability distribution of phases ¢(t) as a func-
tion of ige. For § = 0.2, ¢ = 0.8, ixe = 0.61, N = 128
junctions, and coupling o = 0.2. (a) Temporal behavior: dis-
tribution for a given junction k as a function of time. (b)

Spatial behavior: distribution of phases at a given time t.
Grey scale: white = P(¢) = 0, black = P(¢) = 1.
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FIG. 9. Phase diagram in the o vs i4c plane. For a Joseph-
son junction array with § = 0.2, Q¢ = 0.8, i,y = 0.61,
N = 128 junctions. C, coherent phase; O, ordered phase; PO,

partially ordered phase; T, turbulent phase; Q, quasiperiodic
phase.

tions have different phases (n. ~ N). Some interesting
properties arise when studying the system as a function
of the number of junctions.

First, let us see how the chaos depends on N. In Fig. 10
we plot the maximum Liapunov exponent as a function of
N for different values of o, for a given bias in the turbu-
lent phase (igc = 0.124). We see that A grows with N and
seems to saturate in limit N — oo. In a system with local
coupling, like coupled map lattices, it is always possible
to define a characteristic length scale £ in the behavior
of A(N) in the “turbulent” regimes.!® But in our case
there is no characteristic scale in Fig. 10 since, because
of the global coupling, all the elements are equally close
in distance (i.e., it is equivalent to an infinite-dimensional
lattice).

Instead of A, another quantity that has been stud-
ied in GCM’s is the fluctuations of the mean field.18724
For example, in the GCM of Eq. (10) the mean field
is hp, = (1/N) Y, f(zn(2)). Kaneko'® studied the mean
square deviations of the mean field ((6k)2) = {((h—(h))2),
with (- - -) the average over time and initial conditions. In
the turbulent phase each element z(¢) is chaotic and dif-
ferent for each . If they can be taken as random uncor-
related numbers, then the mean field fluctuations would
follow the law of large numbers, ((6h)2)  1/N. Thus
in the thermodynamic limit N — oo the GCM could
be reduced to N independent logistic maps. However,
Kaneko!® found that the law of large numbers is bro-
ken in GCM’s, and ((6h)2) tends to a constant for large
N. The existence of this size-independent fluctuation
suggests that there is a remaining correlation between
elements. This means that in the turbulent phase the
different variables are not independent even in the ther-
modynamic limit. This dependence has been quantified
by Kaneko by measuring the mutual information between
elements.'® It was found that there remains a finite mu-
tual correlation even in the N — oo limit. This question
of the relation between synchronization and chaotic be-
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FIG. 10. Maximum Liapunov exponent A in the turbulent
phase as a function of the number N of junctions. For § = 0.2,
Q. = 0.8, i,y = 0.61, fixed bias zqc = 0.124, and different
couplings: +, o = 0.1; %, 0 = 0.15; 0, 0 = 0.2; A, o = 0.3;
0, 0 =0.4; x, 0 =0.5.
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havior has been an important topic in the framework of
neuronal modeling; see Ref. 35. In the GCM this mutual
correlation has been interpreted as a hidden coherence in
the turbulent phase. This coherence shows, for example,
in an emergence of broad peaks in the power spectrum of
h,.181% However, an understanding of the origin of this
hidden coherence and the frequency dependence of these
broad peaks is still lacking in this problem. One of the
intriguing questions is that a GCM of tent maps does
follow the 1/N law.!®2324 Since the tent map does not
have periodic windows, it is believed that the periodic
windows may be relevant in the origin of the breakdown
of the law of large number and emergence of peaks in
the power spectrum.1®19:23:24 These and related ques-
tions have motivated some discussion in the literature
very recently.21724

Regardless of the origin of the breakdown of the law of
large numbers in GCM'’s, we study here this phenomenon
in JJSA’s, since it may lead to some experimental con-
sequence in this system. First of all, let us note that in
this case the voltage per junction, v(V)(t) = * Z;vzl gd;]-,
acts as the “mean field” in Eq. (9). Since in the turbu-
lent phase the ¢;(t) and, therefore, the <sz (t) are chaotic
and different for different j, the fluctuations of v(t) are
the quantity that interests us here. However, since this
is a periodically driven system, ((dv)2) = {((v — (v))?)
will not only be due to noisy fluctuations but also to the
amplitude of the rf-induced oscillations in v(t). [Even in
the Shapiro steps it is ((6v)2) # 0.] Instead, we have to
study the power spectrum of v(t) which can be written
as

5@) = i@ + 55 | S w@pi@)| . (15)
i#j

with v;(w) the Fourier transform of v;(t) = g;(t). If
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FIG. 11. Low-frequency limit of the power spectrum,
So = limu 0 S(w), as a function of the number N of junc-
tions. For § = 0.2, Q¢ = 0.8, i;f = 0.61, iac = 0.124, and
different values of the coupling: +, o = 0.1; %, o = 0.15; O,
oc=02; A,0=0.3;0,0=0.4; xX,0 =0.5.

the ¢2j (t) are completely independent, the second term
in (15) will vanish for low frequencies, w — 0. There-
fore S(()N) ~ %S((,l), with SéN) the low-frequency part of
the power spectrum of a JJSA with N junctions. This
is the equivalent of the law of large numbers for a pe-
riodically driven system. If it were valid, we could ex-
pect that in the large N limit the broad band noise part
of v(V)(¢) will tend to vanish (So — 0, for N — o0),
reducing the dynamics of the JJSA to N independent
chaotic junctions with an additional time-periodic driv-
ing C(t) = v(¥2°°)(¢). On the other hand, a finite value
in the limit So(N — oo) will be a measure of the strength
of the remaining synchrony between junctions in the tur-
bulent regime, coming from the second term in Eq. (15).

In Fig. 11 we show the calculated values of Sy as a
function of N for different values of o and for i3, = 0.124
(similar behavior is also seen for other values of ¢4, within
the turbulent phase). We see that for some values of the
coupling o, So does not follow the law of large numbers
since it saturates for large N. However, for o > 0.5 or for
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FIG. 12. Power spectrum of v(7) for a turbulent state, with
increasing N. For § = 0.2, Q¢ = 0.8, ¢;f = 0.61, Zqc = 0.124,
and 0 = 0.4. (a) N =4. (b) N =16. (c) N = 128. (d)
N =16 384.
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FIG. 13. Detailed IV curve in the turbulent phase, show-
ing the emergence of a pseudostep when increasing N. For
g = 0.2, Qi = 0.8, i,s = 0.61, and 0 = 0.4. (+, N = 1; %,
N =16; O, N = 128).

o < 0.1 we find that it follows the 1/N law for the values
of N we can simulate. Therefore, this phenomenon seems
to happen only for intermediate coupling o in the JJSA.

We also studied the full power spectrum S(w) in the
turbulent phase. In Fig. 12 we show the low-frequency
part of the spectra, w < €,¢, for increasing number of
junctions, for a case that has a breakdown of the law of
large numbers. We see that for small N the power spec-

trum is flat. But when NV increases it develops broad
peaks. They get sharper with increasing IV, up to when
So saturates, and then for higher values of IV the spec-
trum remains invariant. This is the same kind of hidden
coherence that has been found in GCM’s (Refs. 18 and
19) as we mentioned previously.

We find that this subtle coherence of the turbulent
phase notably affects the I'V characteristics of the JJSA.
We find that “pseudosteps” emerge in the IV curve for
large N at the same time that Sy saturates in the tur-
bulent phase. This can be seen in Fig. 13. There we see
that, while for N = 1 the IV curve in this region has
a “noisy” aspect, when increasing N a plateau or pseu-
dostep tends to appear. Many pseudosteps are present
all along the range of i4. corresponding to the turbu-
lent phase for the various values of o for which there is
a breakdown of the law of large number, as we show in
Fig. 14. Note that N = 128 is a value before the full
saturation of Sy, since it is hard to simulate very large
N for the full IV characteristics. However, we see that
the pseudosteps emerge and sharpen up with increasing
N, always in coexistence with a saturation of Sy. These
pseudosteps are not true Shapiro steps, since they do not
correspond to mode-locked periodic states. Instead, they
have a positive Liapunov exponent and finite broad-band
noise emission. This emergence of pseudosteps within the
turbulent regime of the JJSA is a new result which one
could not have predicted from our previous knowledge of
GCM'’s. They seem to arise as an additional effect origi-
nated by the fact that we have a system of coupled non-
linear differential equations with a time-periodic drive,
instead of simply coupled logistic maps.

FIG. 14. IV characteristics in the turbu-
lent phase for different couplings o. For
§ =02, Qs = 0.8, ixg = 0.61. (a) o = 0.1.
(b) o =0.2. (c) o =03. (d) o = 04. (e)
o =0.5. (f) o =0.8.
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VI. THERMAL NOISE EFFECTS

In this section we want to consider the effects of ther-
mal noise on the turbulent phase for two reasons: (a)
The thermal effects cannot be ignored in real experiments
(then we must know if the phenomena studied in the pre-
vious sections are stable at finite temperatures); (b) the
addition of noise in the dynamics of GCM’s has shown in-
teresting effects in previous studies,'®1® correlated with
the breakdown of the law of large numbers.

We consider the effect of temperature in the dynamical
equations of the JJSA by adding the contribution of a
Johnson noise in the shunt resistances of each junction, as
it is common in the literature.3° We also add a Johnson
noise contribution in the resistive load. Therefore the
dynamical equations are now given by

b + gdi + sin i + (2T9) " 2ne(7) + ir

= igc + tresin(Qe7) , (16)

al 2Tgo )
.o . go
w- %o+ (52) meon
The thermal Johnson noise is given by the white

noise terms nk(7),nr(7), such that (mx(7)) = 0,
(e (T)ier (77)) = 6(7 — 7')dg k. Temperature is normal-
ized such that T = 2ekT/hl.. We have done numeri-
cal simulations of these equations using a second-order
Runge Kutta method suitable for stochastic differential
equations,?® and the same integration times and time
steps as for the previous T = 0 calculations.

Let us study the effect of temperature on the break-
down of the law of large numbers. In Fig. 15 we show Sy
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FIG. 15. Low-frequency limit of the power spectrum,
So = lim, 0 S(w), as a function of the size of the array N.
For § = 0.2, Qs = 0.8, ir¢ = 0.61, 4qc = 0.124, 0 = 0.4,
and different temperatures T: +, T = 0; *, T =1x10"%
v, T =2x%x107% 0, T =5x10"% A, T =1x107% 0,
T=2x10"%x,T=5x10"%Q,T=1x10"%

as a function of N for o = 0.4 and for ¢4, = 0.124 (which
corresponds to the turbulent regime) for different tem-
peratures. We see that for T = 0, So saturates for large
N (breakdown of the law of large numbers). This effect
is stable for small temperatures, and only after a critical
T.1 ~ 4 x 1075 is there a crossover to a 1/N behavior.
Similar phenomena has been found when adding a white
noise term to GCM’s,'® where also the 1/N behavior is
recovered after a critical value of noise intensity.

More interesting, from the experimental point of view,
is the behavior of Sy as a function of temperature for a
fixed large number of junctions (if NV, is the typical IV
for saturation of Sp at T = 0, we consider N > N,). In
Fig. 16 we show the results for bias igc = 0.124, 0 =
0.4, and N = 16384 junctions. We find three different
thermal regimes.

(i) For T < T¢p = 4 x 107%, the broad-band noise de-
creases when increasing the temperature. This counter-
intuitive behavior is a consequence of the fact that there
is a breakdown of the law of large numbers at T' = 0.
The addition of thermal noise reduces in part the sub-
tle coherence that made S, saturate for large N. In
other words, N, increases when increasing the temper-
ature. This leads to a decrease of Sy when increasing T
at fixed N. Since there is still a breakdown of the law
of large numbers, this is the temperature regime where
the turbulence and the global coupling of the JJSA’s are
manifested. o _

(ii) For T,y < T < Tez, with Tz &~ 5x 1073, S; remains
constant. Now the 1/N law is fulfilled. Here the ¢; act
as independent chaotic variables. In this temperature
regime, the subtle coherence of the global coupling has
been destroyed, and Sy is mainly due to the chaos of the
individual junctions.

(iii) For T > T2, So increases with temperature. In
this part the dynamics of the junctions is dominated by
the thermal fluctuations, and therefore the broad-band
noise Sp is a consequence of the thermal noise.
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FIG. 16. Low-frequency limit of the power spectrum,
So = lim, 0 S(w), as a function of the temperature T'. For
g = 0.2, Q¢ = 0.8, irs = 0.61, iqc = 0.124, o = 0.4, for a large
array, N = 16 384.
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FIG. 17. Power spectrum for

different temperatures. For
§ = 0.2, Qe = 08, ix = 0.61,
ige = 0124, o = 0.4,
N = 16384. (a) T = 0. (b)
T=2x10"% (c¢)T =5x107°.
d T = 1 x 107°%.  (e)
T =2x10"°, (f)T—3><10'5
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The thermal noise affects the full power spectrum in
a surprising way. Perez et al.!® found that in GCM’s
the broad peaks in the power spectrum sharpen up when
increasing the noise. In Fig. 17 we show the power spec-
trum for ¢ = 0.4, i3 = 0.124 as a function of temper-
ature. We see that also in this case the broad peaks,
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FIG. 18. Measure W of the sharpness of the peaks in the
power spectra as a function of the temperature T'. For g = 0.2,
Qs = 0.8, ¢ = 0.61, ¢gc = 0.124, 0 = 0.4, and N = 16 384.
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due to the breakdown of the law of large numbers at
T = 0, get sharper and better defined when increasing
temperature [Figs. 17(a)-17(f)]. Only after T > T.; does
the power spectrum start to become broadened by the
thermal fluctuations [Figs. 17(g), 17(h)]. More quantita-
tively, following Ref. 19, we have defined the measure of
sharpness,

1 S S(@iim) S (wm)
M Ly S(wr)?

W = —log,o , (18)

where M is the number of discrete points in the spectrum.
For a completely flat spectrum W = 0, and for a set of
0 peaks, W — oco. We show in Fig. 18 the sharpness
W as a function of T. We see that W increases with
temperature until it reaches T,.; where it drops abruptly.
Finally we analyze the effect of temperature in the
pseudosteps in the IV characteristics. @We show in
Fig. 19 the IV curves for 0 = 0.4 in the turbulent
phase for different temperatures. We see that the pseu-
dostep structure is stable up to temperatures much larger
than T,; and slightly below T.o, above which they disap-
pear. Therefore, the pseudosteps seem to be more stable
against thermal noise than the breakdown of the law of
large numbers. This result suggests that even when both
phenomena coexist, they are not completely correlated.
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FIG. 19. IV characteristics
in the turbulent phase for dif-
ferent temperatures T and cou-
pling 0 = 0.4. For g = 0.2,
Qs = 0.8, iy = 0.61. (a)
T =0 (b)T =1x10""%
() T = 2 x 107  (d)
T=5x10"% (e) T =1x10"3.
()T =1x10"2
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VII. CONCLUSIONS

We have presented a system'':'? in which many in-

teresting phenomena that are being currently studied in
globally coupled logistic maps'® 24 can be measured in
concrete experiments. The JJSA’s can show coherent,
ordered, partially ordered, quasiperiodic, and turbulent
phases in their IV characteristics. The coherent phase
exists for i3. < i, or for large bias currents. The or-
dered phase corresponds to the Shapiro steps, for which
we have found that the number of big clusters is equal to
the order of the step. The turbulent phase of the JJSA
shows a breakdown of the law of large numbers. The new
feature in this system is that this effect coexists with the
appearance of pseudosteps in the IV characteristics.

A closely related system is charge density waves. Also
in this case there are many coupled degrees of freedom,
which have been recently described with a global coupling
model.3” Including a second time derivative term in their
equations (due to the displacement current) may lead to
the same kind of phenomena studied here.

Josephson junction series arrays like the one dis-
cussed in this paper can be fabricated with the present
techniques.!® One possible experiment consists in making

0.05

0.10 0.15

an underdamped JJSA with a large number of junctions
(N ~ 10%-10%). At very low temperatures, there will be
true Shapiro steps, with no broad-band noise (S = 0),
and pseudosteps with broad-band noise (So # 0). A mea-
surement of the broad-band noise Sy as a function of tem-
perature should show first a plateau below a temperature
Tc2, and then a sharp increase when decreasing temper-
ature below a critical T,y (for junctions with I, =1 pA,
Te1 ~ 1 mK, Tz ~ 0.1 K). This would be a clear indi-
cation of the breakdown of the law of large numbers. Of
course, experiments with JJSA’s with different number
of junctions of the same characteristics will be a more di-
rect verification. A comparison of the different IV curves
and the different power spectra as a function of N would
show clearly the breakdown of the law of large numbers
and the emergence of pseudosteps, as described here.
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