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Abstract

We discuss the effects of both temporal and quenched noise in underdamped Josephson junction series arrays that are
globally coupled through a resistive load and driven by an 1f current. We study the breakdown of the law of largd numbers
in the turbulent phase of the Josephson arrays. This corresponds to a saturation of the broad band noise S fd)r a large

number N of mm‘hnnc We find that thig nhpnnmpnnn is stable acgainst temnoral noise (thermal ﬂurvhmrmnc\ and \nnpnnhprl

.............................................................................

noise (dxsorder). The behavior of Sy versus temperature T, for large N, shows three different regimes. For 0 < T< Tei. So
decreases when increasing T, and there is turbulence and the breakdown of the law of large numbers. For T, < T< T2, So
is constant and the dynamics is dominated by the chaos of the individual junctions. Finally for T > T.2, Sy is mainly due to

thermal fluctuations, since it increases linearly with 7'.

Josephson junction arrays are mesoscopic devices
which can be fabricated with very specific properties
(see, e.g., Ref. [1]). In the last years they have be-
come a good Iaboratory for the study of noniinear dy-
namical systems with many degrees of freedom [2-

Q1 ?\/[nrﬂnvpr fhp\l have potential qnnhr\qhnnc ag hich
Sy, € polenital €allens as nign

frequency coherent power sources [9,10], paramet-
ric amplifiers and voltage standards [9]. One of the
prototype models of nonlinear systems with many de-
grees of freedom are coupled logistic maps [11]. In
particuiar, globally coupled maps (GCM) have been
studied as a mean field type extension of these mod-

els [121, As a consequence of the |nh=rn]av between

temporal chaos and space synchromzatlon, the GCM
exhibit coherent, ordered, partially ordered and turbu-

priast, Lyo

the spatlal coherence is completely destroydd a sub-
tle collective behavior emerges. This was seen as a
violation of the law of large numbers [ 13-17] when
increasing the number of logistic maps.

Recently, we have studied a physical reaiization of
the GCM in one-dimensional Josephson junction se-
ries arrays (JJSA) [7,8]. In this system, the fole of the
logistic maps is played by underdamped sing‘e Joseph-
son junctions, which can have chaotic dynarﬁics when
driven by an rf bias current [18,19]. The gﬂobal cou-
pling is achieved by connecting the junctionzf in series
but with a common resistive shunting load. 1heretore,
the two conflicting trends of GCM are present: destruc-
tion of coherence due to the chaotic divergences of
the individual junctions, and synchronization through
the global averaging of the common shunting load.
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Fig. 1. Schematic circuit of a Josephson junction series array with
a resistive load Ry and external current bias /g. Each Josepshon
junction, with critical current /c, is modeled including a shunt
resistance r and a capacitance C.

We have found that the breakdown of the law of large
numbers can be observed in rf-driven underdamped
JISA, accompanied in this case by an emergence of
novel pseudo Shapiro steps [ 7]. We have also studied
the different regimes in the spatio-temporal dynamics
of the JISA, finding coherent, ordered, partially or-
dered, turbulent and quasiperiodic phases, depending
on the dc component of the bias current {7,8].

Our previous studies have been performed neglect-
ing thermal fluctuations and disorder in the JISA. In
this Letter we will consider the effects of a finite tem-
perature and the effects of the disorder on the turbu-
lent phase of JJSA, for two reasons. (i) The thermal
noise cannot be ignored if we want to encourage real
experiments in this system (then we must know if the
breakdown of the law of large numbers is stable at
finite temperatures). Also, in the real JISA the junc-
tions are not exactly identical: the values of the criti-
cal currents of the junctions have typically a spread of
5% or 1% in the best cases [9]. (ii) The addition of
noise in the dynamics of GCM has shown interesting
effects in previous studies [13,14].

2. Dynamics of Josephson junction series arrays:
turbulent phase

Let us consider an array of underdamped Joseph-
son junctions connected in series, shunted by a resis-
tive load in parallel [2,3], and subjected to an f bias
current Ig(t) = Iy + Issin(wst). A schematic rep-
resentation of this circuit is shown in Fig. 1.

The dynamical behavior of the junction k in the
array is given by

) h dpy Ch d*¢y
Is=1 SO TR
S c'k51n¢k+26’r ar + %e d + i (),

k=1,...,N, (N

where ¢ is the superconducting phase difference in
the Josephson junction k, . 4 is its corresponding crit-
ical current, r is the quasiparticle resistance of the
junctions, C is the capacitance of the junctions and I
is the current flowing through the circuit branch with
the junctions in series. The Johnson noise term Iy (¢)
satisfies (I (1) Ty (¢)) = (2kT/r) 84 42 6(t —1'), with
T the temperature. Egs. (1) correspond to the resis-
tively shunted junction model [20], commonly used
to describe the behavior of current biased Josephson
junctions [21].

On the other hand, the common resistive load sat-
isfies,

N

I =-1—iv +r(z)=2—ﬁ—g¢—"+r (1)
TR T T ger ar T

(2)

where Ry is the resistance of the load, I is the current
flowing through the load, V; = (/i/2e)(d¢py/ dt) is
the voltage drop in the junction &, and I'L(t) is the
Johnson noise in the shunting load ((I'L{t)I'L(¢')) =
(2kT/RL)8(t —1")). The external bias current divides
between the load and the junctions in series,

In(t) = lgc + Lesin(wget) = Is + 1. (3)

Therefore, the governing equations of the JISA in re-
duced units are

N
. . L . o .
br + gi + icasin i + (2Tg) e(r) + § > 2
p

of
+ (_gz

12
N ) NL(7T) = ige + L sin(£2y7). 4)

We have used the following normalizations: currents
are normalized by the nominal critical current I, =
(Iek), i = 1/1; the time is normalized by the plasma
frequency wpt = 7, with wp = /2el./iC, and volt-
ages are normalized by r/.. The normalized rf fre-
quency is §%s = w/w,. The thermal Johnson noise
is given by the white noise terms 1 (7), such that
(me(7)) = 0, (M (M) (7)) = 8(7 — 7)) By 4. Tem-
perature is normalized as T = 2ekT/#l.. The parame-
ters in the equations are g = (#i/2eCr2I.)'/? and o =
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rN/R\. Here o represents the strength of the global
coupling in the array. Note that when o = 0 Eq. (4)
reduces to a set of N independent junctions. The volt-
age per junction,

LSS,
J j

acts as a mean field variable. We consider i, ; = 148y,
with y; a random independent noise with normal dis-
tribution, and & the disorder strength. We integrate nu-
merically Egs. (4) with a second order Runge-Kutta
method suitable for stochastic differential equations
[22], with step A7 = T/160 with T = 27/ (2, for inte-
gration times t = 10247, after discarding the first 256
periods. For each run we used different sets of random
initial conditions {¢ (0), ¢ (0)}.

Let us first review the case without thermal fluctua-
tions, T = 0, and without disorder, 8 = 0. The simplest
attractor of the system is the coherent state for which
¢ (1) = ¢;(7) = do(7). The equations reduce to the
single junction dynamics,

v(t) =

do + 3bo + sin o = ipias(7), (3)

with 2 = g(1 4 o). It is known that the single Joseph-
son junction can have chaotic behavior in the under-
damped regime (for g < 2) below the plasma fre-
quency ({2 < 1) [19].

One of the responses that can be measured experi-
mentally are the /-V characteristics of the JJSA, which
is the time average voltage per junction,

v= —Z (1)) = Zg $; (1)),

as a function of ig.. When the junctions are rf-biased,
they can show Shapiro steps [23,19]. These are re-
gions for which the average voltage is constant and
given by v = (n/m)g{ke. They correspond to phase
locked states, which are periodic solutions in reso-
nance with the rf current, either harmonic (m=1), or
subharmonic (m > 1). In other parts of the /-V char-
acteristic it is possible to have chaotic solutions, in
which the junction switches pseudorandomly between
unstable, overlapping Shapiro steps [ 18,19]. We study
the chaotic nature of the solutions by computing the
maximum Lyapunov exponent A of the JJSA. Exper-
imentally, most chaotic modes can be observed as

broad band noise in the power spectrum of the:voltage
[ 18,19]. The power spectrum is computed as

T, )

9 4
v(r) e dr| .

S(w) =7

Ill

(6)

0

In the presence of broad band noise, the low fre-
quency part of the spectrum approaches a constant,
So = lima,_¢0 S(w).

We study the spatial behavior of the JJSA through
the concept of “clustering” [12]. After the system has
fallen in an attractor, we say that two junctions i, j be-
long to the same cluster if ¢;(f) = ¢;(t) + 24rn with
n an integer. An attractor can be characterized by the
number of clusters it has, 7, and the numbet of ele-
ments of each cluster (M, M,,.... M, ). Fdr exam-
ple, the coherent state is a one-cluster attractdr (#g =
1, M; = N). Using these tools, we have studied the /-
V characteristics of the JISA for T = 0, calculating A,
So and ny as a function of the bias current iq. [7,8].
We found that there is (i) an ordered regimé, which
is periodic in time (it corresponds to Shapirosteps in
the /-V characteristics), and is ordered in space in a
finite number of “clusters” with the same ph:#se (ii)
a coherent regime, with all the phases equa]L (i) a
partially ordered regime, and (iv) a turbulent regime,
where there is chaos both in time and spacei(all the
junction phases are different at a given time). In Fig.
2 we show the /-V characteristics, the Lyapyjnov ex-
ponent and the number of clusters n; for a JJSA with
N = 128 junctions, coupling o = 0.4, and parame-
ters g = 0.2, £2r = 0.8, and iy = 0.61. Wd mainly
show here the range of iyc where there is a turbulent
phase, characterized by A > 0 and ny ~ N, This is
the regime that shows the most notable changjes when
increasing the number of junctions N [7,8]. :

First of all, let us note that the voltage per junction,

N
1 ;
(N) - )
vi(t) = N E ] 8®;.
-

acts as a “mean field” in Eq. (4). Since in the turbu-
lent phase the ¢; (¢) take random values a]mbst inde-
pendently, one might expect that v(¢) will behave as
an average noise. The power spectrum of v (¢} will be

N2

S(w) = %\uj(wﬂz + —l—(;v,—(w)u;(w)) (7)
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Fig. 2. Behavior of a Josephson junction series array as a function
of ig.. For coupling o = 0.4, N = 128 junctions and parameters
g =02, £y = 08, iy = 0.61. (a) Average voltage v (/-V
characteristics ). (b) Maximum Lyapunov exponent A. (¢) Number
of clusters n.

withv; (@) the Fourier transform of v; (1) = gé; (¢).If
the ¢ ; (1) are completely independent, the second term
will vanish for low frequencies, @ — 0. Therefore
S§V ~ (1/N) 87, with S§ the low frequency part
of the power spectrum of a JJSA with N junctions.
This is the equivaleni of the law of large numbers for
a periodically driven system. However, we have found
that within the turbulent phase S; saturates for large N,
evidencing a breakdown of the law of large numbers
[7], as observed in GCM [13-16]. This is shown in
Fig. 3 for given values of o and i4.. At the same time
some pseudo-steps emerge in the /-V characteristics
for large N. The phenomenon of pseudo-sieps has been
discussed by us in Refs. [7,8]. They are evidenced in
Fig. 2a within the turbulent phase.

The breakdown of the law of large numbers in GCM
has been interpreted by Kaneko [13] as a hidden co-
herence in the turbulent regime. This coherence shows,
for example, an emergence of broad peaks in the power

—_c
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Fig. 3. Low frequency limit of the power spectrum,

Sp = limy,—0 S(w), as a function of the size of the array N.
£=02,124 =08, i =061, iy = 0.124, 0 = 0.4. {(a) For varying
disorder and zero temperature: (+) 8 = 0, (%) & = 0.005, (/)
6=001, (¢) 6=0.02, (A) §=0.05. (b) For different temper-
atures and no disorder (5 =0): (+) T =0, () T=1 x 1079,
(W) T=2x107% (O) T=5x10"5, (A) T=1x103% (0O)
T=2x1075 (x) T=5x10"% () T=1x10"%

spectrum of the mean field variable [13,14]. How-
ever, an understanding of the origin of this hidden co-
herence and the frequency dependence of these broad
peaks is still lacking in this problem [13-15,17]. We
have also found an emergence of broad peaks in the
power spectrum of v(¢) for large N coexisting with

the breakdown of the law of large numbers [8].
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Let us study the effect of both temporal and
quenched noise on the breakdown of the law of large
numbers. Particularly, we focus in this paper in its
experimental consequences in measurable variables
in JISA.

First, we discuss the effect of nnpm‘hpd disorder at

S z SUR G

zero temperature, 7 = 0. In F1g 3a, we show Sy as
a function of N for o = 0.4 and iy, = 0.124 (which
corresponds to the turbulent regime) for increasing
disorder & = 0.0,0.005,0.01,0.02,0.05. We see that
the breakdown of the law of large numbers is stabie

below a critical disorder 8. ~ 0.015. For § > &
ll/‘f\! law for the broad band noise.

v vainu i

Therefore, the effects we described in Refs. [7,8] can
only be observed in arrays with a 1% spread in the
critical currents at most.

In Fig. 3b we show Sy as a function of N for the same
o and ig4. as before, without disorder (6 = 0) and with
different values of the temperature. We see that for
T =0 (. catniratac far laorce N Thic hrankdnwn ~f

fo the
T =0, S saturates for large N. This breakdown of the
law of large numbers is stable for small temperatures,
and only after a critical T,y ~ 4 x 1073 there is a
crossover to a 1/N behavior. A similar phenomenon
has been found when adding a white noise term to
GCM [ 13], where also the 1/N behavior is recovered
after a critical value of noise intensity.

Maore interactino. from the exneri
VIOTC HNCICSUHE,

view, is the behavior of S as a function of temperature
for a large number of junctions (above saturation for
T = 0). In Fig. 4 we show the results for bias ig. =
0.124, o = 0.4 and N = 16384 junctions. We find
three different thermal regimes.

(i) For T < Ty, =~ 4 x 1073, the broad band noise

Avrvorncoe with ine
GECreases vvu,u inc

we recover the
we récover Ine

ntal naint of
rom (ne experimenta: point of

emperature Thic ntar_
\/llll}\al (109 QY l.lllD UUUIIL\A

intuitive behavior is a consequence of the fact that
there is a breakdown of the law of large numbers at
T = 0. The addition of thermal noise reduces in part
the subtle coherence that made Sy saturate for large
N. In other words, the typical N = N, for saturation
of Sy increaseas with increasing noise. This leads to a

darranca of C. wha rancing 7 for a ixed N Since
aclrease ot UU wnehn 111\;1»(101115 T for a nxea /v, SInce

there is still a breakdown of the law of large numbers,

this is the temperature regime where the turbulence

and the global coupling of the JISA are manifested.
(ii) For Ty < T < T, with Ty & 5 x 1073, S,

1

! TURBULENCE

10" \\S\Sm

CHAOS NOISE

Fig. 4. Low frequency limit of the power spectrum,
So = limy,—0 S(w), as a function of the temperature T. ﬂor a large

array, N = 16384, § = 0.2, 4 = 0.8, iy = 0.61, ige = 0.124,
o=04

remains constant. Now the 1/N law is fulfilled. Here

tha ot ndanandant schantin v ahla T thig
l.ll\/ w’ abl LIO lllU\«lJ\allU\/lll. \allaULlU V(-UIGUIUQ, i) LlllD

temperature regime, the subtle coherence of the global
coupling has been destroyed, and Sp is basically due
to the chaos of the individual junctions.

(iii) For T > T., Sy increases with temperature.
Here the dynamics of the junctions is dominated by
the thermal fluctuations, and therefore the broad band

oiga S consequence of the thermal noite
noise Sp 15 a CONSCHULTILT O uic tnermai noise.

The thermal fluctuations affect the full power spec-
trum of v(t) in a surprising way. Perez et al. [14]
found that in GCM the broad peaks in the power spec-
trum become sharper when increasing the noise. In
Fig. 5 we show the power spectrum for o = 0.4, ig. =
0.124 for different temperatures and N = 16384. In the

ahcanca of tha al flnctuations T =0 we onb in Fig
aosence Of nCrmax niucuations, {1 = v, we 5¢¢ 1 x1g.

Sa that there are broad peaks in the power spedtrum for
frequencies w < ws. As stated before, these d>eaks are
a consequence of the hidden correlations existing in
the turbulent phase [13], due to the breakdown of the
law of large numbers. Here we see that when adding
a finite temperature, the broad peaks get sharper an
hattar dafined when increacin /pn'vo Sb-5d). nn|v

oClier Geiineag winen lu\,l\/uouls i 4y

after T > T, the power spectrum starts t(m become
broadened by the thermal fluctuations (Flgs Se, 51).

More quantitatively, following Ref. [ 14], we define
a measure of sharpness,
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Fig. 5. Power spectrum of the voltage for different temperatures. £ = 0.2, ¢ = 0.8, iy = 0.61, iy, = 0.124, o = 0.4, N = 16384, (a)T=0
() T=2x107% (c) T=1x 1075 (d) T=3 x 10-5; () F=2 x 10-*: () T=5x10"4

=—lo (i Zgl ZrﬁrLl S(")l+m)S(w,,,)>
=—logie | 47 S S(w)? ’
(8)

where M is the number of discrete points in the spec-
trum. For a completely flat spectrum W = 0, and for a
set of & peaks, W — oco. We show in Fig. 6 the sharp-
ness W as a function of T. We see that W increases
with temperature until it reaches T.; where it drops
abruptly.

4. Conclusions

We have presented a numerical study of the effects
of noise on the turbulent phase of rf-driven globally

coupled JISA. The breakdown of the law of large num-
bers is stable at finite temperatures and for weakly
disordered arrays. There is both a well defined criti-
cal disorder strength 8, and a critical temperature T¢,
for the existence of this effect. A remarkable effect
is that the sharpness of the broad peaks in the power
spectrum increases with increasing temperature.
Josephson junction series arrays like the one dis-
cussed in this article can be fabricated with the present
techniques {9]. In order to observe the breakdown
of the law of large numbers, they need to be of high
quality, with a spread in the critical currents of no
more than 1%. One possible experiment consists in
making an underdamped JISA with a large number
of junctions (N ~ 10°-10%). A measurement of the
broad band noise Sp when cooling the Josephson array
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-6 [ L~
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Fig. 6. Measure W of the sharpness of the peaks in the power
spectrum as a function of the temperature 7. § = 0.2, 25 = 0.8,
iy =0.61, iy =0.124, 0 =0.4 and N = 16384.

should show the three temperature regimes described
here. First, a decrease of Sy when decreasing the tem-
perature. Second, a plateau below a temperature T,.
And finally, a sharp increase of Sy when decreasing
T below a critical temperature T;; (for junctions with
I. =1 puA, Ty ~ 1 mK, T, ~ 0.1 K). This last
regime will be a clear indication of the breakdown of
the law of large numbers in JJSA.
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