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Abstract 

We discuss the effects of both temporal and quenched noise in underdamped Josephson junction series arrays that are 
globally coupled through a resistive load and driven by an rf current. We study the breakdown of the law of large numbers 

in the turbulent phase of the Josephson arrays. This corresponds to a saturation of the broad band noise SO for a large 
number N of junctions. We find that this phenomenon is stable against temporal noise (thermal fluctuations) and iquenched 
noise (disorder). The behavior of SI) versus temperature T, for large N, shows three different regimes. For 0 < 7’ < T,I. SO 
decreases when increasing T, and there is turbulence and the breakdown of the law of large numbers. For TCI < T < TC?, So 

is constant and the dynamics is dominated by the chaos of the individual junctions. Finally for T > TCz, SO is mainly due to 
thermal fluctuations, since it increases linearly with T. 

1. Introduction 

Josephson junction arrays are mesoscopic devices 

which can be fabricated with very specific properties 
(see, e.g., Ref. [ l] ). In the last years they have be- 
come a good laboratory for the study of nonlinear dy- 

namical systems with many degrees of freedom [2- 
81. Moreover, they have potential applications as high 
frequency coherent power sources [ 9,101, paramet- 
ric amplifiers and voltage standards [ 91. One of the 

prototype models of nonlinear systems with many de- 
grees of freedom are coupled logistic maps [ 111. In 

particular, globally coupled maps (GCM) have been 
studied as a mean field type extension of these mod- 
els [ 121. As a consequence of the interplay between 
temporal chaos and space synchronization, the GCM 
exhibit coherent, ordered, partially ordered and turbu- 

lent phases [ 121. In the turbulent phase, even when 
the spatial coherence is completely destroyed, a sub- 
tle collective behavior emerges. This was seen as a 
violation of the law of large numbers [ 13- 171 when 
increasing the number of logistic maps. 

Recently, we have studied a physical realization of 

the GCM in one-dimensional Josephson junction se- 
ries arrays (JJSA) [ 7,8]. In this system, the role of the 
logisticmaps is played by underdamped single Joseph- 
son junctions, which can have chaotic dyna 

r 

its when 

driven by an rf bias current [ 18,191. The g obal cou- 
pling is achieved by 
but with a common 
the two conflicting 
tion of coherence 
the individual junctions, and synchronizati 
the global averaging of the 
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Is= Idc+ 1,sinwt 

‘,- 
R I. 

Fig. 1. Schematic circuit of a Josephson junction series army with 

a resistive load RL and external current bias 1~. Each Josepshon 

junction, with critical current Ic, is modeled including a shunt 

resistance r and a capacitance C. 

We have found that the breakdown of the law of large 
numbers can be observed in rf-driven underdamped 
JJSA, accompanied in this case by an emergence of 
novel pseudo Shapiro steps [ 71. We have also studied 
the different regimes in the spatio-temporal dynamics 
of the JJSA, finding coherent, ordered, partially or- 

dered, turbulent and quasiperiodic phases, depending 
on the dc component of the bias current [ 7,8]. 

Our previous studies have been performed neglect- 
ing thermal fluctuations and disorder in the JJSA. In 
this Letter we will consider the effects of a finite tem- 

perature and the effects of the disorder on the turbu- 
lent phase of JJSA, for two reasons. (i) The thermal 
noise cannot be ignored if we want to encourage real 
experiments in this system (then we must know if the 
breakdown of the law of large numbers is stable at 
finite temperatures). Also, in the real JJSA the junc- 

tions are not exactly identical: the values of the criti- 
cal currents of the junctions have typically a spread of 

5% or 1% in the best cases [9]. (ii) The addition of 
noise in the dynamics of GCM has shown interesting 
effects in previous studies [ 13,141. 

2. Dynamics of Josephson junction series arrays: 
turbulent phase 

Let us consider an array of underdamped Joseph- 
son junctions connected in series, shunted by a resis- 
tive load in parallel [ 2,3], and subjected to an tibias 
current IB (t) = I& + Zrf sin( w,ft). A schematic rep- 
resentation of this circuit is shown in Fig. 1. 

The dynamical behavior of the junction k in the 
array is given by 

k= l,...,N, (1) 

where & is the superconducting phase difference in 
the Josephson junction k, Ic,k is its corresponding crit- 
ical current, P is the quasiparticle resistance of the 
junctions, C is the capacitance of the junctions and Is 

is the current flowing through the circuit branch with 
the junctions in series. The Johnson noise term rk ( t) 
SatiSfieS (rk(t)rk’(t’)) = (2kT/r)&@(t-t’), with 
T the temperature. Eqs. (1) correspond to the resis- 

tively shunted junction model [20], commonly used 
to describe the behavior of current biased Josephson 

junctions [ 211. 
On the other hand, the common resistive load sat- 

isfies, 

+ rL(t), 

(2) 

where RL is the resistance of the load, 1~ is the current 

flowing through the load, & = (fi/2e)(d&/dt) is 
the voltage drop in the junction k, and r~(t) is the 

Johnson noise in the shunting load ((r~( t)rL( t’)) = 
(2kT/ RL)S( t - t’) ) . The external bias current divides 

between the load and the junctions in series, 

Ia( t) = f& + l,f sin(u,ft) = 1s + IL. (3) 

Therefore, the governing equations of the JJSA in re- 

duced units are 

,j=l 

qL(?-) = idc + &fsin( k?,fT). (4) 

We have used the following normalizations: currents 
are normalized by the nominal critical current I, = 
(I&, i = I/I,; the time is normalized by the plasma 
frequency apt = r, with wP = ,,/v, and volt- 
ages are normalized by rl,. The normalized rf fre- 
quency is Qf = wrf/wP. The thermal Johnson noise 
is given by the white noise terms T(T), such that 

(r]k(T)) = 0, (r]k(~hk’(~‘)) = 8(7 - ‘f)ak,k/- ‘rem- 

perature is normalized as T = 2ekT/hI,. The parame- 
ters in the equations are g = ( fii/2eCr21,) ‘/2 and (T = 
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rN/RL. Here g represents the strength of the global 
coupling in the array. Note that when CT = 0 Eq. (4) 

reduces to a set of N independent junctions. The volt- 
age per junction, 

acts as a mean field variable. We consider ic,k = 1 +a Yk 

with Yk a random independent noise with normal dis- 
tribution, and 6 the disorder strength. We integrate nu- 

merically Eqs. (4) with a second order Runge-Kutta 
method suitable for stochastic differential equations 
[ 221, with step AT = T/l60 with T = 21r/&, for inte- 

gration times t = 1024T, after discarding the first 256 
periods. For each run we used different sets of random 

initial conditions {C&(O),&(O)}. 
Let us first review the case without thermal fluctua- 

tions, T = 0, and without disorder, 6 = 0. The simplest 
attractor of the system is the coherent state for which 

& (7) = 4j (7) = 40 (7). The equations reduce to the 
single junction dynamics, 

. . 
40 + && -t sin 430 = ibias( (5) 

with 2 = g( 1 + a). It is known that the single Joseph- 
son junction can have chaotic behavior in the under- 
damped regime (for 2 < 2) below the plasma fre- 

quency (Gf < 1) 1191. 
One of the responses that can be measured experi- 

mentally are the I-V characteristics of the JJSA, which 
is the time average voltage per junction, 

U = b C(u,(t)) = $ Cg(djtt)), 
I i 

as a function of i&, When the junctions are rf-biased, 

they can show Shapiro steps [ 23,191. These are re- 

gions for which the average voltage is constant and 

given by ~1 = (n/m)gQ. They correspond to phase 
locked states, which are periodic solutions in reso- 
nance with the rf current. either harmonic (m = 1)) or 

subharmonic (m > 1) . In other parts of the I-V char- 
acteristic it is possible to have chaotic solutions, in 

which the junction switches pseudorandomly between 
unstable, overlapping Shapiro steps [ 18,191. We study 
the chaotic nature of the solutions by computing the 
maximum Lyapunov exponent A of the JJSA. Exper- 
imentally, most chaotic modes can be observed as 

broad band noise in the power spectrum of the,voltage 
[ 18,191. The power spectrum is computed as 

(6) 

In the presence of broad band noise, the low fre- 

quency part of the spectrum approaches a constant, 
SO = lim,,o S(w). 

We study the spatial behavior of the JJSA through 
the concept of “clustering” [ 121. After the system has 

fallen in an attractor, we say that two junctions i, j be- 

long to the same cluster if c#+ (t) = 4.j (t) + 2Pn with 
n an integer. An attractor can be characterized by the 

number of clusters it has, n,t, and the number of ele- 
ments of each cluster (MI, M2, . . . , M,, ). For exam- 

ple, the coherent state is a one-cluster attractor (Q = 
1, Mi = N) Using these tools, we have studi& the I- 
V characteristics of the JJSA for F = 0, calcuIating A, 

So and n,t as a function of the bias current ik [7,8]. 
We found that there is (i) an ordered regime, which 
is periodic in time (it corresponds to Shapirolsteps in 

the I-V characteristics), and is ordered in space in a 
finite number of “clusters” with the same phase, (ii) 

a coherent regime, with all the phases equal1 (iii) a 
partially ordered regime, and (iv) a turbulent’regime, 

where there is chaos both in time and space j (all the 
junction phases are different at a given time). In Fig. 

2 we show the Z-V characteristics, the Lyapunov ex- 

ponent and the number of clusters n,t for a JJSA with 
N = 128 junctions, coupling CT = 0.4, and parame- 
ters g = 0.2. Gr = 0.8, and i,r = 0.61. We mainly 
show here the range of idC where there is a thrbulent 
phase, characterized by A > 0 and n,t M N; This is 
the regime that shows the most notable changes when 

increasing the number of junctions N [ 7,8]. 
First of all, let us note that the voltage per junction, 

N 

UcN’(t) = $ Cg$,j, 
j=l 

acts as a “mean field’ in Eq. (4). Since in the turbu- 
lent phase the $,j (t) take random values almost inde- 
pendently, one might expect that o(t) will behave as 
an average noise. The power spectrum of u( tB will be 

s(W) = k/l.,j(w)12+ $ 
( 

CUi(O)u,r(W)’ , (7) 

iiG 1 
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Fig. 2. Behavior of a Josephson junction series array as a function 

of idC. For coupling o = 0.4, N = 128 junctions and parameters 

a = 0.2, @.r = 0.8, i,r = 0.61. (a) Average voltage u (I-V 
characteristics). (b) Maximum Lyapunovexponent A. (c) Number 

of clusters n,t. 

with U,i (w ) the Fourier transform of U,i ( t) = g$j ( t) . If 

the $j (t) are completely independent, the second term 

will vanish for low frequencies, w --+ 0. Therefore 
ScN) N (l/N)$“, with ShN’ the low frequency part 0 

of the power spectrum of a JJSA with N junctions. 
This is the equivalent of the law of large numbers for 

a periodically driven system. However, we have found 

that within the turbulent phase So saturates for large N, 
evidencing a breakdown of the law of large numbers 
[ 71, as observed in GCM [ 13-161. This is shown in 
Fig. 3 for given values of u and i&. At the same time 
some pseudo-steps emerge in the I-V characteristics 
for large N. The phenomenon of pseudo-steps has been 
discussed by us in Refs. [ 7,8]. They are evidenced in 
Fig. 2a within the turbulent phase. 

The breakdown of the law of large numbers in GCM 
has been interpreted by Kaneko [ 131 as a hidden co- 
herence in the turbulent regime. This coherence shows, 
for example, an emergence of broad peaks in the power 

lo-9t _ ,,,__ ,,,uul ,,,iurl ,-__ 

100 101 102 103 104 105 
N 

Fig. 3. Low frequency limit of the power spectrum, 

Sn = lim,,() S(w). as a function of the size of the array N. 

2 = 0.2, fi,.t = 0.8, i,f = 0.61, idc = 0.124, cr = 0.4. (a) For varying 

disorder and zero temperature: (+) 6 = 0, ( *) S = 0.005, (v) 

S = 0.01, (0) 6 = 0.02. (A) 6 = 0.05. (b) For different temper- 

atures and no disorder (6 = 0): (+) t = 0, (*) 7 = 1 x IO-“, 

(~)~=2xl0-“,(0)j:=Sxl0-“,(A)i:=lxlO-~.(~, 

T=2 x 10-s. (x) t=5 x 10-s. (0) I== I x 10-j. 

spectrum of the mean field variable [ 13,141. How- 
ever, an understanding of the origin of this hidden co- 
herence and the frequency dependence of these broad 
peaks is still lacking in this problem [ 13-15,171. We 
have also found an emergence of broad peaks in the 
power spectrum of u(t) for large N coexisting with 
the breakdown of the law of large numbers [ 81. 
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3. Effects of noise: quenched disorder and 
thermal fluctuations 

Let us study the effect of both temporal and 
quenched noise on the breakdown of the law of large 
numbers. Particularly, we focus in this paper in its 

experimental consequences in measurable variables 
in JJSA. 

First, we discuss the effect of quenched disorder at 

zero temperature, i: = 0. In Fig. 3a, we show SO as 
a function of N for w = 0.4 and idc = 0.124 (which 

corresponds to the turbulent regime) for increasing 
disorder S = 0.0,0.005,0.01,0.02,0.05. We see that 

the breakdown of the law of large numbers is stable 

below a critical disorder 6, M 0.015. For 6 > 6, 
we recover the l/N law for the broad band noise. 

Therefore, the effects we described in Refs. [ 7,8] can 
only be observed in arrays with a 1% spread in the 
critical currents at most. 

In Fig. 3b we show SO as a function of N for the same 

g and i& as before, without disorder (6 = 0) and with 
different values of the temperature. We see that for 

F = 0, SO saturates for large N. This breakdown of the 
law of large numbers is stable for small temperatures, 
and only after a critical Tel z 4 x 10d5 there is a 
crossover to a l/N behavior. A similar phenomenon 

has been found when adding a white noise term to 
GCM [ 131, where also the 1 /N behavior is recovered 
after a critical value of noise intensity. 

More interesting, from the experimental point of 
view, is the behavior of So as a function of temperature 

for a large number of junctions (above saturation for 

7 = 0). In Fig. 4 we show the results for bias idc = 
0.124, (T = 0.4 and N = 16384 junctions. We find 
three different thermal regimes. 

(i) For F < Tel x 4 x IO-‘, the broad band noise 
decreases with increasing temperature. This counter- 

intuitive behavior is a consequence of the fact that 
there is a breakdown of the law of large numbers at 
i: = 0. The addition of thermal noise reduces in part 
the subtle coherence that made SO saturate for large 
N. In other words, the typical N = N, for saturation 
of SO increaseas with increasing noise. This leads to a 

decrease of SO when increasing F for a fixed N. Since 
there is still a breakdown of the law of large numbers, 
this is the temperature regime where the turbulence 
and the global coupling of the JJSA are manifested. 

(ii) For i;,l < T < Tc?. with Fc2 M 5 x 10e3, SO 

Fig. 4. Low frequency limit of the power spectrum, 

So = lim,,o .S( w), as a function of the temperature F ffor a large 

array, N = 16384. a = 0.2. Q.r = 0.8, i,.f = 0.61, idc = 0.124, 
n = 0.4. 

remains constant. Now the l/N law is fulfilled. Here 

the 4.i act as independent chaotic variables1 In this 
temperature regime, the subtle coherence of the global 
coupling has been destroyed, and SO is basiclally due 
to the chaos of the individual junctions. 

(iii) For ?? > Tc’c2, SO increases with temgerature. 
Here the dynamics of the junctions is domifiated by 
the thermal fluctuations, and therefore the brc)ad band 
noise SO is a consequence of the thermal noi$e. 

The thermal fluctuations affect the full power spec- 

trum of u(t) in a surprising way. Perez et al. [ 141 
found that in GCM the broad peaks in the poier spec- 
trum become sharper when increasing the ihoise. In 
Fig. 5 we show the power spectrum for ff = 0.4, i& = 
0.124 for different temperatures and N = 16384. In the 

absence of thermal fluctuations, ‘ii = 0, we se in Fig. 
5a that there are broad peaks in the power sped&urn for 
frequencies w < o,f. As stated before, these desks are 
a consequence of the hidden correlations eqisting in 
the turbulent phase [ 131, due to the breakdoCn of the 
law of large numbers. Here we see that wheb adding 

a finite temperature, the broad peaks get sllarper an 
better defined when increasing F (Figs. 5b-5kl). Only 
after T > Fc,I the power spectrum starts toi become 

broadened by the thermal fluctuations (Figs.~ 5e, 5f). 
More quantitatively, following Ref. [ 141, tie define 

a measure of sharpness, 
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Fig. 5. Power spectrum of the voltage for different temperatures. g = 0.2, .c& = 0.8, iti = 0.61, & = 0.124, v = 0.4, ,y = 16384. (a) t = 0; 
(b) F = 2 x IO-‘; (c) T- = I x 10e5; (d) T- = 3 x 10es; (e) i; = 2 x 10m4; (f) i: = 5 x IO-~. 

(8) 

where M is the number of discrete points in the spec- 
trum. For a completely flat spectrum W = 0, and for a 
set of 6 peaks, W --) co. We show in Fig. 6 the sharp- 
ness W as a function of 7. We see that W increases 
with temperature until it reaches TCt where it drops 
abruptly. 

4. Conclusions 

We have presented a numerical study of the effects 
of noise on the turbulent phase of rf-driven globally 

coupled JJSA. The breakdown of the law of large num- 
bers is stable at finite temperatures and for weakly 

disordered arrays. There is both a well defined criti- 
cal disorder strength 8, and a critical temperature TC1 
for the existence of this effect. A remarkable effect 
is that the sharpness of the broad peaks in the power 
spectrum increases with increasing temperature. 

Josephson junction series arrays like the one dis- 
cussed in this article can be fabricated with the present 

techniques 191. In order to observe the breakdown 
of the law of large numbers, they need to be of high 
quality, with a spread in the critical currents of no 
more than 1%. One possible experiment consists in 
making an underdamped JJSA with a large number 
of junctions (N N 103-105). A measurement of the 
broad band noise SO when cooling the Josephson array 
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Fig. 6. Measure W of the sharpness of the peaks in the power 

spectrum as a function of the temperature t. g = 0.2, f&t = 0.8, 

i,r = 0.61, i,~~ = 0.124, (r = 0.4 and N = 16384. 

should show the three temperature regimes described 

here. First, a decrease of SO when decreasing the tem- 
perature. Second, a plateau below a temperature Tc2. 
And finally, a sharp increase of SO when decreasing 
T below a critical temperature T,, (for junctions with 

I, = 1 ,xA, Tel - 1 mK, Tc2 N 0.1 K). This last 
regime will be a clear indication of the breakdown of 
the law of large numbers in JJSA. 
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