PHYSICAL REVIEW A

VOLUME 50, NUMBER 6

DECEMBER 19%4

Infinite set of relevant operators for an exact solution
of the time-dependent Jaynes-Cummings Hamiltonian

J. L. Gruver, J. Aliaga,* and Hilda A. Cerdeira
International Centre for Theoretical Physics, P.O. Boz 586, 34100 Trieste, Italy

A. N. Proto
Grupo de Sistemas Dindmicos, Centro Regional Norte, Universidad de Buenos Aires, Casilla de Correo 2, 1638 V. Lopez,
Buenos Aires, Argentina
(Received 4 May 1994)

The dynamics and thermodynamics of a quantum time-dependent field coupled to a two-level
system, well known as the Jaynes-Cummings Hamiltonian, is studied, using the maximum entropy
principle. In the framework of this approach we found three different infinite sets of relevant opera-
tors that describe the dynamics of the system for any temporal dependence. These sets of relevant
operators are connected by isomorphisms, which allow us to consider the case of mixed initial con-
ditions. A consistent set of initial conditions is established using the maximum entropy principle
density operator, obtaining restrictions to the physically feasible initial conditions of the system.
The behavior of the population inversion is shown for different time dependencies of the Hamilto-
nian and initial conditions. For the time-independent case, an explicit solution for the population
inversion in terms of the relevant operators of one of the sets is given. It is also shown how the
well known formulas for the population inversion are recovered for the special cases where the initial
conditions correspond to a pure, coherent, and thermal field.

PACS number(s): 42.50.Dv

I. INTRODUCTION

The problem of a two-level system coupled to a sin-
gle mode of a radiation field [1] is the simplest nontrivial
model which describes the matter-radiation interaction.
In the rotating wave approximation this model becomes
exactly solvable and describes a large amount of phenom-
ena in fields such as quantum optics, NMR, and quantum
electronics [2-9]. Since the paper of Jaynes and Cum-
mings [1], many authors have studied the collapses and
revivals of the population inversion when the field is ini-
tially in a coherent state. In particular, Eberly et al
[10] found accurate expressions to describe the interme-
diate and long time behavior of the population inversion.
Experimental evidence of this phenomena has also been
observed [11,12]. Recently, the thermodynamics of this
model has been studied by Liu and Tombesi [13]; de-
parting from the grand partition function, they found
the temperature dependence for some thermodynamical
magnitudes. One of the fundamental features that ap-
pears in the quantum two-level system is the complex
structure of the correlation between the two-level sys-
tem and the field due to the quantum character of the
latter [14-16]. The maximum entropy principle (MEP)
approach [17-19] has already been used to solve the two-
level system coupled to a classical field [20,21]. In that
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work the complete dynamics was described in terms of
the mean value of four relevant operators. A consistent
set of initial conditions (CSIC) [20] was established using
the MEP density operator, obtaining restrictions to the
physically feasible initial conditions (IC) of the system.
In this paper we study a generalization of the quantum
two-level system to the time-dependent case [14,22-27].
Since we are interested in obtaining a description to be
used in different fields of physics, we shall describe the
system in terms of three different sets of relevant op-
erators, which are straightforwardly obtained by use of
the MEP. These sets of operators are connected via lin-
ear transformations which allows us to change from one
set to another. For the Jaynes-Cummings Hamiltonian
(JCH) the operator sets are infinite and in consequence
the dynamics is described by an infinite set of ordinary
differential equations for the mean values of the relevant
operators, making evident the quantum character of the
field. As we have shown before, the IC for the dynami-
cal set of equations cannot be arbitrarily chosen [17,18].
The CSIC is properly obtained using the MEP density
matrix. The purpose is achieved introducing the Hamil-
tonian as a relevant operator for constructing our density
matrix. This fact, leads to a quantum thermodynamical
description of the problem [28]. The time-independent
case is studied in detail in order to reduce our general
results to previous ones. A general solution for the pop-
ulation number of one of the levels is obtained and the
results for a pure, coherent, and thermal state are recov-
ered [29-32]. We compare an approximate time evolution
of the mean value of the level population with the one
obtained by the series solution, when the field is initially
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in a coherent state, in order to evaluate the effects of
the approximation on the evolution equations. It is ob-
served that the approximate solution is improved, and
tends to the series solution, when the number of corre-
lations included in the solution is increased. Finally, for
the time-dependent case, we recover the results obtained
by Prants and Yacoupova [25] and Joshi and Lawande
[26] for their functions of time when the field is initially
in a coherent state. The same time dependencies are also
studied and extended to the thermal case and the results
are discussed.

The paper is organized as follow: In Sec. II we give
some concepts of the MEP approach; Sec. III is devoted
to obtaining the three sets of relevant operators, giv-
ing the transformations between sets and the dynamical
equation for one of these sets. In Sec. IV the thermody-
namical treatment is developed and invariants of motion
are presented. Section V gives the exact solution of the
population inversion for a general IC. We also show how
the formulas for the population inversion are recovered
when a pure, coherent, and thermal state is considered.
In Sec. VI we give the numerical results obtained for
the population inversion and the second-order coherence
function for a linear and an exponential time dependence
when the field is initially in a coherent or thermal state.
Finally, in Sec. VII the conclusions are drawn.

II. MEP CONCEPTS

We summarize in this section the fundamental con-
cepts of the MEP [17,18]. Given the expectation values

(OJ) of the operators Oj, the statistical operator p(t) is
defined by

M
Bty =exp | —dol =D 205 |, (2.1)
j=1

where M is a natural number or infinity, and the M + 1
Lagrange multipliers A; are determined to fulfill the set
of constraints

(0;) =Tr [5(t) 051, i=0,1,...,M (22
(Oo = I is the identity operator). The entropy, defined
in units of the Boltzmann constant, is given by

M
S(p)=-Tr[pInp] =Xl +Y X(0)),

j=1

(2.3)

and the time evolution of the statistical operator is given

by

L dp - .
ih =[H(),5(t)] -
One should find those relevant operators (RO) enter-
ing in Eq. (2.1) so as to guarantee not only that S is
maximum, but also a constant of motion. Introducing
the natural logarithm of Eq. (2.1) into Eq. (2.4) it can
be easily verified that the RO are those that close a semi-

(2.4)
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Lie algebra under commutation with the Hamiltonian H,
ie.,

L
[H(),0:] = ih Y g;i(t)0; .

j=0

(2.5)

Equation (2.5) defines an L x L matrix G and constitutes
the central requirement to be fulfilled by the operators
entering in the density matrix. The Liouville equation
(2.4) can be replaced by a set of coupled equations for
either the mean values of the relevant operators or the
Lagrange multipliers as follows [17,18]:

A L
d(Oj)e _ 5 S
et izzo 9i;(0;) , j=0,1,...,L, (2.6)
L
d)j T .
I: Aigjia J=0,1,...,L. (2.7)

=0

In the MEP formalism, the mean value of the operators
and the Lagrange multipliers belong to dual spaces which
are connected by [17,18],

o 9o

(05) = “a (2.8)

III. TIME-DEPENDENT JCH AND PHYSICALLY
RELEVANT OPERATORS

The generalized time-dependent JCH in the rotating
wave approximation takes the form

I?I = EIBIB]. + Egl;;i;z + w&f&

+hi(t) (7a$1$; + 7*5251:11) , (3.1)
(k = 1), where v is the coupling constant between the
system and the external field, E; and w are the energies
of the levels and the field, respectively, @' and a are bo-
son operators, B;' and l;j are fermion operators and h(t)
is an arbitrary (adimensional) function of time. As was
said in Sec. II the MEP approach is based on a descrip-
tion of the problem in terms of relevant operators which
should close a semi-Lie algebra under commutation with
the Hamiltonian. In the problem considered in this paper
it turns out that the relevant operators can be presented
in three different but equivalent sets, each of them having
different physical interpretations and connected via iso-
morphisms which allow us to go from one set to another.

A. Sets of relevant operators

The advantage of having multiple representations (in
our case three different sets of relevant operators con-
nected by isomorphisms) is clearly seen when partial in-
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formation in any set is known (e.g., some initial mean
values are unknown), and it is possible to complete the
missing information using the complementary data in any
other set (i.e., mixed IC [18]). Thus, first considering the
level populations, it is found that the infinite sets of RO
can be written in terms of only six elementary operators
which will be called physically relevant operators. They
are

Nl = I;Ii)l s (323
Ng = i);l;z y (32b
=ata, (3.2¢

= i(’y“@lgl - '7*325*&1) , (3.2e
NZ,] = 8;528151 , (32f

where N;, | =1, 2, and A can be thought of as the pop-
ulation number of the levels and the external field, re-
spectively. I can be considered as the interaction energy
between the levels and the external field, F as the parti-
cle current between levels and, finally, N2,1 as the double
occupation number. It is interesting to mention that the
operators [(3.2a), (3.2b), (3.2d)—(3.2f)] can be considered
as the quantum counterpart of the operators obtained for
the semiclassical two-level system studied in Ref. [20].

The first set of RO, SI, which closes a semi-Lie algebra
with the Hamiltonian [see Eq. (2.5)] reads,

N} = @h" My @), (3.3a)
NP = (ah)™ N, (@)™, (3.3b)
A" = (@ah" A (a), (3.3¢)
= @h~ I @a)" (3.3d)
Fr=@h"F (a )" (3.3¢)
NZ, = @h)™ N (@) (3.3f)

n = 0,1,.... The RO of this set have the main prop-
erty of being in normal order [33]. For n = 0 Egs. (3.3)
reduce to the fundamental set [Egs. (3.2)]. This set is
suitable for numerical simulation because it provides the
simplest form of the system of differential equations for
the evolution of their mean values.

The second infinite set of RO, SII, which also fulfills
the closure relation Eq. (2.5) has the form

N = N, (ah)™(a)™, (3.4a)
N = N, @) (@)™, (3.4b)
br=1[A@)r@r+@r@ra] . (B
ir = % [f @@+ @h@ri] (3.4d)
= L[F @)@+ @) @nF] . (3e)
N3, = Noq (@)"(@)" (3.4f)

n = 0,1,.... This set can be interpreted as the corre-
lation functions between the fundamental operators and
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(a*)™(a)™, which is proportional to the nth-order coher-
ence function of the field (see for example, Ref. [30]). The
last set of RO, SIII, describes the correlations between the
fundamental operators and the energy of the field

Ne = &, (ata)", (3.5a)
N = N, (ata)”, (3.5b)
D = A (ata)" (3.5¢)
I = % [ @ty + @l 1] (3.5d)
&= % |7 @tay + @lay F] (3.5¢)
Ne . = N,, (a'a)", (3.50)

n=0,1,....

As mentioned previously the three sets are connected
by linear transformations which allow us to transform
operators of any set into that of another. These relations
between sets give the possibility to consider CSIC where
the mean values of the relevant operators belongs to dif-
ferent sets (i.e., mixed initial values). The transformation
between SI and SII reads

N® =R, (3.6a)

NP = N3, 3.6b)

. n —_1\n—Th! .

An=3 L l)r' "o (3.6¢)
=0 :

R e e P

j = (3.6d)
=0

n < 'l)n—-rn!"r
r=0 ’

N7, =NT,. (3.61)

Notice that Egs. (3.6a), (3.6b), and (3.6f) evidence the
fact that the level populations and the double occupation
number commute with the field operators. On the other

hand, since ﬁ'", f", and A™ contain creation and an-
nihilation operators of the field in their definitions, the
transformations involve operators from order zero up to
n. The transformations between SI and SIII are as fol-
lows:

n

NP =3 (pa-r) M, (372)
r=0

Np = (pa-r) M, (3.7b)
=0

An " e (—l)n—j n! Pj—r ~r

=y (R EERE ) b
r=0 \j=r

n = < (_1)n——j n! Dj—r Ar
r=0 Jj=r

o (s DT e ) 5 (3.7¢)

- 23! ’

r=0 j=r
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n

N2 = (pnr) M2, (3.76)
r=0
where
Dj—r = Z (—1)j_ri1 : 'ij—r ’
0<4; <<t n<j—1
G A,
j>r, j,r€Ny, and po=1. (3.8)

Since only properties of the field operators were involved
in the calculations, the transformations are independent
of the characteristics of the two-level system and the tem-
poral dependence h(t). From now on, in order to study
the dynamical and thermodynamical features of this sys-
tem, we will deal with the set SI defined by Egs. (3.3),
as it is the easiest to handle in numerical simulations.

In quantum optics, one usually deals with the so-called
population inversion given by

(8)e = (N2)e — (ND)s - (3.9)

Another measure of the nonclassical characteristic of the
problem is the second-order coherence function,

(@)%
(@ta)?

note that g2(t) < O implies sub-Poissonian distribution
or antibunching. Thus, if one has only interest in the
evolution of the population difference between the two-
level the Jaynes-Cummings model in terms of the Pauli
matrices can be used. In this case a different set of RO
that satisfies Eq. (2.5) is obtained

g*(t) = -1, (3.10)

= (ah" & (a)", (3.11)
= @hr@r = Ar, (3.12)
(@f) (vaé4 +~6-a") (@), (3.13)
= (@"" i(vaé4 — "5 - a*)(a)" (3.14)

where n = 0,1,.... It is important to mention that this
set is not equivalent to SI, SII, or SIII because it has
less information since we are looking at the difference of
population between levels rather than at the population
of each level.

Finally, we want to point out that the words physically
relevant operators has a deep meaning in our context,
since different sets emerge from the particular operator
structure of the Hamiltonian. For instance, different op-
erator sets are obtained applying Eq. (2.5) if the Hamil-
tonian is considered with or without the rotating wave
approximation.

B. Dynamical equations and invariants of motion

In the MEP formalism the dynamics of the Hamilto-
nian is described in terms of a set of ordinary differential
equations for the mean value of the relevant operators
[see Egs. (2.6)]. Usually this set of ordinary differential

equations is of finite dimension and, therefore, is straight-
forwardly solvable. In the case considered here, due to the
quantum character of the field, the system becomes infi-
nite and with time-dependent coefficients [due to h(t)].
However, the Ehrenfest theorem [Eq. (2.6)] is still valid
and we obtain the dynamical equations for the general-
ized time-dependent JCH

d(z ) _ h(e)(E™) + nh(t) (F7Y), (3.15a)
d<N;> . n
S = O, (3.15b)
W) — (i) + 2 PR+ 1(8F)
—(NTHY) + (NpHY)
—(n+1)(N3 )], (3.15¢)
d(in> _ n
=) (3.15d)
d%tn) — (n+ DA()(E™), (3.15¢)
d(Ng)) _
=B =g, (3.15f)
n=0,1,..., where § = E; — F; — w.

As will be seen later, this system can be explicitly
solved for the time-independent case recovering well-
known previous results. For the time-dependent case,
it is also possible to obtain some analytical solutions (see
for instance Refs. [14,22-27]), but these analytical ex-
pressions should also be approximated to obtain numer-
ical results. In Sec. VII we show that it is possible to
obtain numerically exact solutions of the same quality by
considering correlations up to a given order. Notice that
the dynamical equations [Egs. (3.15)] can be thought of
as a kind of generalized Bloch equations for the quantum
field case. One interesting point concerning the dynamics
of this Hamiltonian is the evaluation of its invariants of
motion. These can be proved to be

{(N{‘)t + (N5 — (A"*)t}:ozo ; (3.16)
{(N;,x)t}:ozo ) (3.17)

for any function h(t) and
(o) = (e - oA} (3.18)

for h(t) = 1. Analogous expressions can be obtained
for the sets SII [Eq. (3.4)] and SIII [Eq. (3.5)]. It then
becomes clear that the particle current between levels
({(F°)) is equal to the photon flux. For n = 0 we obtain
the conservation of the population of the levels and for
n > 0 a restriction for the correlations ((O™)).

For the case of the Jaynes-Cummings model the invari-
ants read
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(6™, (G (67
{ 7 T n+1 t _0’ (3.19)
for any function of time h(t) and
fn 6 an 6 An =
(I)e+ 5(8™)e + (G ; (3-20)
n=0

for h(t) = 1. Note that for n = 0 the above invariants
reduce to those given in Ref. [33]. Now, in terms of the
nth-order coherence function, Egs. (3.19) and (3.20) read

@G, (G (@M
{ 2 T ari Tt _0’ (3:21)
for any function of time h(t) and
R DU TSN b
{Z ( zn)—r,,.! (ET)e + 2 ((UG e + (G )t)} ’
r=0 n=0
(3.22)

for h(t) = 1, (E"), = ((I° G" + G"I°)/2);. These
invariants of motion, evaluated for the time-dependent
Jaynes-Cummings model, are expressed in terms of the
coherence functions [30] broadly used in quantum optics
experiments [see Egs. (3.21), (3.22)]. Equations (3.16)-
(3.22) show that the mean value of the operators will not
be independent, giving a restriction to the choice of the
IC. 1t is crucial to use a formalism that allows a proper
evaluation of this consistent set of initial conditions. In
the following section we will use the MEP density ma-
trix given in Eq. (2.1) to generate a CSIC and we will
obtain invariants of motion in the Lagrange multipliers
dual space.

IV. QUANTUM THERMODYNAMICS, THE
DUAL )\ SPACE AND INITIAL CONDITIONS

The MEP context has the advantage that the IC can be
chosen not only in the space of Lagrange multipliers but
also in the space of mean values if carefully done. These
Lagrange multipliers are numbers that can be freely cho-
sen, while the mean values cannot [see Eq. (3.16)]. As
we have shown before [14] the A dual space conserves
or possesses all the restrictions coming from the fact
that we are dealing with a quantal system (i.e., the non-
commutativity of the operators). This allows us to work
in the )\ space, preserving the quantal nature of the sys-
tem. In order to do so the partition function Ag should be
evaluated, as we will see below. The proper diagonaliza-
tion of the density matrix can be done if the Hamiltonian
of the system is introduced as a relevant operator. This
leads to a nonzero temperature density operator. Once
the diagonalization is made, Ao and the CSIC for the
mean values can be obtained using Eq. (2.8). In our for-
malism the lack of knowledge on the mean value of one
operator is equivalent to setting its Lagrange multiplier
equal to zero. In order to derive the thermodynamical
density matrix we include the Hamiltonian in the set of
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relevant operators; then the temperature of the system
can be defined as [28]

1 as

B = f = ———a [ . (4.1)
(H) (6;)

In the problem considered here two temperatures can be
defined [14]: one related to the total system (i.e., the
two-level system plus the field) and the other associated
with the quantum field. The last one takes into account
only the thermodynamics of the field, and appears au-
tomatically in the formalism via the Lagrange multiplier
associated with A. Therefore, to derive a thermodynam-
ical solution to the problem at hand, we write the density
matrix including the Hamiltonian as a relevant operator.
Thus, the statistical operator can be written as

A(t) = exp [—,\oi -pE-Y (X;N;' FARND + AZE™
n=0

HAZIm 4+ AZND + ,\;;A") . (4.2)

The diagonalization of Eq. (4.2) can be performed noting
that the relevant physical operators do not introduce ma-
trix elements different from zero outside the 2 x 2 blocks
defined by the Hamiltonian. This is a consequence of the
rotating wave approximation, which also determines the
nonappearance of the electric and magnetic field as rel-
evant operators (a detailed discussion of this point and
related topics will be treated in a separate article). Thus,
diagonalizing and evaluating the trace of j(t) we arrive
at the following expression for A¢ in terms of the other
Lagrange multipliers:

do=1In {Z e Kirg cosh(K2 )

r=1
oo oo
T . Ze—K«-r} )
=0 =0

where

BlEz + Ey + (2r — Dw] = [AT o
= E : 2ine
Kl,r 2 + 2 ™

n=0

+)\;‘ + (2r ; n—1)A% H::ll} ’ (4.42)

Kz, = X2+ Y2+ 22, (4.4b)

K3, =fro+ Y _AIL, (4.4c)
n=0

K4,,. = ﬂ(Ez + El + Tw)
+STIPTUT £ A3 A8+ (r —n)AF], (4.4d)
n=0

are invariants of the motion [this can be shown using Eq.

2.7],
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X, =/ry (ﬂh + z,\"n: 11) (4.5a)
n=0
Y, = \/_'YZ’\nHr 1 (4.5b)
Z, = _ﬂ6+z ('\nH" !
_—2_—("2+—1)’\£n":1) , (4.5¢)

and I = [[7L(r — 7), II7* = 1. We want to mention
that {X,,Y,, Z.} can be considered as a generalization of
the vector model of density matrix shown in Ref. [30]. As
in the case considered in that reference, one component
of the vector is related to the population of the levels
while the others are related to the real and imaginary
parts of the nondiagonal elements of the density operator
(interaction energy and particle current). In this sense
we can consider K, as the norm of a vector in R3, with
components {X,,Y,,Z,.}. So, these r-dependent spheres
can be thought of as an extension in the dual space of
Lagrange multipliers of a sort of quantized version of the
Bloch sphere. Notice that Ag is the partition function of
the system. This means that all the thermodynamical
quantities can be computed [28].

Applying Egs. (2.8) and (4.3) the CSIC is obtained.
For example, the initial mean value of the population of
the level one and its correlations with the field reads

oo
—ﬁEl—’\llj(sn,O + Z -t [e_K"”

r=1

(N7)o = e {

(cosh(Kz,,)— . sinh(Kz,,,))

Z

K2,r
] )
=0

where § is the Kronecker function. In order to compare
with the IC usually shown in literature, we study some
special sets of CSIC. Notice that in our formalism a CSIC
implies having the partition function A¢ of the problem.

(4.6)

A. Noninteracting IC

Usually, the initial knowledge is restricted to the pop-
ulation of the levels and the distribution of photons of
the field. Thus, in the Lagrange multipliers dual space
this IC reads: A9 # 0, A3 # 0, A2 # 0 with n > 0,
taking the remaining Lagrange multipliers equal to zero
(complete lack of knowledge). This IC will be called non-
interacting. Thus, we obtain

(JY{')O = (]\:/'{))o(énﬂ)o, (4.7a)
(N3)o = (N3)o(A™ )0, (4.7b)
(N31)o =0, (4.7¢)
(F™)o =0, (4.7d)
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(I") =0, (4.7¢)
Yoz 7 exp (— Y7o TN
(Ao = =2 ( — %) (4.76)
Er:O exp (_ Ej:o Hl/\é)
where
-9 —2%-19
&0 _ e 1 + e 1 2
(Nl)O - 1+e—'\? +e_Ag +e“Ag—'Ag, (4.83.)
-9 -A2-19
(R9yo= — St (4.8b)

14e 2 +e 22 42237

Notice that for the special case considered here, the cor-
relations between the population of the levels and the
field are initially decoupled for any initial distribution of
the field (i.e., 3 =0, A3 =0, A} =0 Vn > 0).

B. Pure state IC

Let the field be initially in an eigenstate of the Hamil-
tonian. This pure state case is the simplest IC that can
be studied. When the field is initially in a state |m), Eqgs.
(4.7) read

(NTYo = (ND)o(A™ )0, (4.9a)
(NPyo = (N9)o(A™ 1Y, (4.9b)
(N2,1)0 =0, (4.9¢)
(F™)o =0, (4.9d)
(I"yo =0, (4.9¢)
(Am) =TI (4.9f)

where (N?) and (Ng) are defined as in Eqs. (4.8). Note
that when n > m (A")o = 0. Thus, for this IC only a
finite number of moments of the population number of
the field are initially different from zero. The mean value
of the population number is m and

((a%a)?)o — (a'a)2 = 0. (4.10)

C. Coherent state IC

Another IC broadly used in the literature is the coher-
ent state. For instance, collapse and revivals were first
observed for this IC. If the field is initially in a coherent
state |a), Eqgs. (4.7) read

(NT)o = (WD)o(A™ 1o, (4.11a)
(N3Yo = (N)o(A™ )0, (4.11b)
(N31)o =0, (4.11c)
(F™)o =0, (4.11d)
(I"Yo =0, (4.11e)
(A™)o = ((A%)o)"™** = |af?t**1), (4.11f)

where (N?) and (N9) are defined as in Eqs. (4.8). Thus,
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for this IC the mean value of the population number is
||? and

((a

Let us observe the fact that the mean value of the
moments of the number of photons of the field increase
very fast as n grows. This tells us that as we increase
the number of photons of the field, the system becomes
more and more correlated. This fact will be reflected in
the numerical study of the evolution Egs. (3.15).

fa))o — (a'a)5 = |af*. (4.12)

D. Thermal state IC

Now, let us consider the case of having the field initially
in a thermal state. This IC is a particular case of Egs.
(4.7) and has been studied by Knight and co-workers (see
for instance Refs. [29,31,32]). In the Lagrange multipliers
dual space this IC reads A9 # 0, A # 0, A3 # 0 and
the other Lagrange multipliers are equal to zero. This
peculiar selection of A gives automatically the IC for a
thermal state of the field (see Ref. [33]). The initial mean

value of A™ reads

(n+1)!

(B0 = gy e = (mF DIA%)™ (413)

The other IC are given by Egs. (4.7).
n = 0 we have

Notice that for

1
(e*8(®) — 1)

From this expression we see that A3(0) is equal to 3*w,
where (3* is the temperature associated only with the
field. It is clear that A (0) should be a positive num-
ber since the temperature is a positive number. Summa-
rizing, the solution for the usually called thermal state
results as a particular selection of the IC for the values
of A in the A\ dual space. Looking at Egs. (4.11f) and

(A%, = (ata)o = (4.14)

j

(A%,
Q3

(e = (o + Loy + (
X Z bn k
Z

t) - @2 Ck(t)]

n—1

(Fn()zbnk

where (A*)g = e2(NF)0/2+6(1%)o+€2(k+1)(N5,)o/2,
bn,k = an‘k@’zcz—Z, Cj(t) cos (th) — 1, Sj(t)
sin (2;t), and a, x = (—1)"***+!1/(n—k)!k!. A remarkable
property of Eq. (5.3) is that the first nonvanishing term
of the correlation (O7), in this solution is proportional to
27, 27+ or t2»*2, depending on the different operators
O;. This can be seen if one makes a Taylor’s expansion
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- O Sk (1)]

(4.13) we immediately see that if in both cases the initial
population of the field is (A%)o, we obtain

(A™h = (n+ 1A con- (4.15)
This relation shows that for a thermal state, the values
of the correlation are even greater than in the coherent
case. Therefore, a larger number of equations are needed

for larger values of (A%), when this case is numerically
studied.

V. GENERALIZED TIME-INDEPENDENT
JAYNES-CUMMINGS HAMILTONIAN

Now, we study the time-independent Hamiltonian case
which leads to the standard Jaynes-Cummings Hamilto-
nian. The Hamiltonian reads

ff = Eli){i)l + EzB;Bz + w&tfl + ’7&315; + 7‘325167.
(5.1)

For this case, Egs. (3.15) can be explicitly solved using
a series expansion method. If the Hamiltonian is time
independent and (O), is the mean value of a quantum
operator, its evolution can be written in power series as
follows:

A A =1 t\" A -
= — | = ... H
©O=©O0+ 3 1 (i) (OBl
(5.2)
where each term has n commutators. Using Eq. (2.5),

[--[0,H],...,H] can be expressed in terms of the set
of relevant operators and the matrix G. To fix ideas
let us choose N 0 as O. If one introduces the quantized
generahzed Rabl ﬂoppmg frequency [30], Q2 = 62 + (n+

1)e? = Q2+ ne?, €2 = 4]v|%, and O, = n/Qk, the exact
solution for <N1>g becomes

2 (N2)o (A™)o 92<N?)0
a0z ) +Z( 202 )

N2 0
5 Moy zbnk

n=1

— @220 (1)]

(5.3)

-

of (O7); and uses Eqgs. (3.15) together with the fact that
the a,j satisfy the following Vandermonde-like system
of equations [34,35]

n—1

z ank(n—k)k* =8in 1,

k=0

i=0,... (5.4)

,n—1.

Thus, up to a given time, there will be only a finite
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number of correlations that will contribute substantially
to the solution (5.3). Similar expressions can be obtained
for all the operators. Using that

Z Qn, k@Zn 2= —Qn,n, (55)
Eq. (5.3) simplifies to
(F)e = (Mo = 3 (870 S anse 220
n=0 k=0 O
+Z N’ oy D ank(k+ I)Ck(t)
n=0 k=0
- Z Yoy an, Sg’;it). (5.6)
k=0

Now, and in order to see how this expression reduces
to the well known ones [30] we rewrite Eq. (5.3) for the
initial conditions considered in the preceding section. We
specialize our results for the special case in which the
correlations between the population of the levels and the
field are initially decoupled for any initial distribution
of the field (i.e., 3 =0, A} = 0, A} = 0 Vn > 0) and

resonance [i.e., # =0 and Opr = y/(n+1)/(k +1)]. We

obtain
0\ _ /R0 1o a1y X Onk(k +1)7
(N1>t = (N1)0 + 51; ((N1+ )()’;::1 W
-3 —“"—)) Cal®), (5.7)
k=n+1

where we have used that

oo -

P UHaT Z S

n=0 =0

Ck (t)

=Y X (e A Ca): (59)

Note that in general the evolution of the population
inversion is expressed as an infinite sum of cosines with
frequencies proportional to /n, weighted by the density
of photons of the quantum field. In our case, as it was
expected, we have the same cosines but weighted by co-
efficients proportional to the mean values of the correla-
tion functions defined by Eqs. (3.3). Now, we rewrite
Eq. (5.7) for the special cases considered in Sec. IV.

A. Pure state

If the field is initially prepared in a number state |m)
and we have one particle in level one, the time evolution
of the population of level one is described by the well
known Rabi solution given by

(WD) = 311+ cos(2l|vmt)],

which has been obtained replacing Egs.

(5.9)

(4.9), in (5.7)
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and using Eq. (5.13).

B. Coherent state

If the initial state of the field is a coherent one, Eq.
(5.7) reads

A0>n+1 —(A%,

(B)e=1+1 Z‘ S Ca(t),

(5.10)

where Egs. (4.11) and

o\ k+1
Z(l (A> _( <A0>)n+l(

k=n+1

e—<A°>3+‘)

(5.11)

were used. As can be seen, the cosines are weighted by a
Poisson distribution of photons. Now, performing simple
algebra we obtain the formula for the population of the
first level as follows:

(F9), = (1 L B0 L oiva t))

n=0

(5.12)

It is well known that the Poisson spread of Rabi frequen-
cies dephases, or collapses, the Rabi oscillations with
a time independent of n. The Rabi oscillations partly
rephase, or revive. Collapse and revival are a fundamen-
tal consequence of the discreteness of the quantized field
mode and they have no classical counterpart. For an
extended discussion of these and related topics, see, for
instance, Refs. [10,29].

C. Thermal state

We now consider the special case of having one particle
in level one and the field in a thermal state. The distri-
bution of photons associated with this IC is the Bose-
Einstein distribution. Using Egs. (4.7), (4.13), (5.7),

n—1 _
(=) +mHin k4 1\"!
and
oo <A0>§+1(_1)k+n+1(k+1)!
k=n+1 (k= n)!(n+1)!

= (=1)2+1(A0)nt1 (UT(AL")_O)"_“— — 1) , (5.14)

we obtain
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(ND)e =

D) -

o~ (A%
(1 + Z W COS(Zl’Yl\[’fZi)) .

k=0
(5.15)

Note that we have a distribution of Rabi frequencies.
Knight and Radmore found that also for this case the
Rabi oscillations collapse and revive as a consequence
of the discreteness of the quantum field (for a detailed
analysis of this effect we refer the reader to Ref. [32]).

VI. NUMERICAL RESULTS

In this section we are going to study the evolution of
the population inversion (6); and the second-order coher-
ence function g2(t) for a linear and exponential coupling
and with the field initially in a coherent and thermal
state. The numerical results were obtained by choosing
an interval of time and neglecting those correlations that
do not contribute to the solution for the given time inter-
val. Remember that an analogous approximation should
be done, when calculating (G); from the series solution.
That means that from the numerical point of view both
procedures give an exact numerical solution up to a given
time since neither the series nor the system of equations
have, in general, a closed analytical solution.

In Fig. 1 we see how the different order of the cor-
relations enters into the evolution of (6);. The field is
initially in a coherent state with (A%)q = 10, the two-
level system is initially in the excited state and we use
noninteracting IC (see Sec. IV A). Thus, (7)o = 107,
(Ao = 1091, (N3 Yo=(F7)o=(I")o = 0 for 0 < j < m.
We also assume that the system is in resonance (i.e.,
6 = 0). In all cases we plot in dashed line the evolution
for (6); for n = 80 (n is the higher correlation included
in the truncated solution). For this we have numerically
proven that it is not necessary to include higher-order
correlations and thus we will say that the solution is ex-
act for the chosen adimensional time interval. It is also
for n = 80 that we have obtained a complete agreement
with the evolution obtained from the series solution. Fig-
ure 1(a) shows in solid line (G); for n = 57. We see that
for times smaller than 10/ both curves coincided. For
later times they start to differ and, moreover, for times
greater than 30/ the evolution goes beyond the bounds
[~1,1]. Figure 1(b) shows the improvement when we in-
crease the order in one unit (n = 58). Now, the curve is
bounded between [—1,1) and there is a better agreement
between the solid and dashed curves for times larger than
10/~. In Fig. 1(c) we increase by two the number of cor-
relations (n = 60). We observe that there is a better
agreement between both curves, but a difference remains
for times greater than 25/v. In Fig. 1(d) we plot (6):
for n = 70. We now see that both curves are in complete
agreement and, therefore, it is not necessary to include
more correlations.

For the time-dependent case, analytical expressions
have been found, to the best of our knowledge, in few
cases [14,22-27]. Recently, Prants and Yacoupova (25]
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FIG. 1. Temporal evolution of (). for different orders of
n. The solid line corresponds to (a) n = 57, (b) n = 58, (c)
n = 60, (d) n = 70. In all cases h(t) =1, § = 0, the field
is initially in a coherent state with (A Yo = 10, the two- level
system is in the excited state, we use noninteracting IC, and
for the dashed line n = 80.
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FIG. 2. Temporal evolution of (6)¢ with a linear

time-dependent coupling: (a) ¢ = 8.0, (b) ¢ = 2.0, (c)
¢ = 0.5. Curve (d) represents (¢); for the time-independent
case [h(t) = 1]. In all the cases 7y = 50, n = 80, § = 0,
the field is initially in a coherent state with (A%), = 10, the
two-level system is in the excited state, and we use noninter-
acting IC.
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FIG. 3. Temporal evolution of g%(t) with a linear

time-dependent coupling: (a) ¢ = 8.0, (b) ¢ = 2.0, (c)
¢ = 0.5. Curve (d) shows g?(t) for the time-independent case
[k(t) = 1]. In all the cases 7y = 50, n = 80, § = 0, the field
is initially in a coherent state with (Ao)o = 10, the two-level
system is in the excited state, and we use noninteracting IC.
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the field is initially in a thermal state w1th (A% = 0.1, the
two-level system is in the excited state, and we use noninter-
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acting IC.
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found analytical expression for an exponential modula-
tion of the coupling. Joshi and Lawande [26] have de-
scribed the dynamics of (6); and g2(t) for a linear sweep.
We will show that our results, obtained from the sys-
tem Eq. (3.15) agree with the numerical results of Refs.
[25,26]. Moreover, we also calculate the dynamical evo-
lution for the case of having the field in a thermal state.

We start analyzing the linear case. Thus h(t) takes the
form
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Figures 2(a—c) and 3(a—c) show the evolution of {5); and
g%(t), respectively, for the linear sweep [(a) c = 8.0, (b)
¢ = 2.0, (c) ¢ = 0.5]. In Figs. 2(d) and 3(d) the time-
independent case is depicted. We have used the same IC
as that in Fig. 1. We have chosen 7y = 50, n = 80 for all
the cases and resonance (§ = 0). We see that our results
are in complete agreement with those of Ref. [26]. In Fig.
2(a) we see the collapse and revivals of (6); expected
when the field is initially in a coherent state. Figure
3 shows the antibunching or sub-Poissonian distribution
which has no classical counterpart.

In Figs. 4 and 5 we study the time evolution of (&),
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FIG. 6. Temporal evolution (6); with an exponential
time-dependent coupling: (a) switch on, K/y = —0.05,
to = 0; (b) switch off, K/y = 0.05, to = 7. Curve (c) rep-
resents (&), for the time-independent case [h(t) = 1]. In all
the cases 7y = 50, n = 80, § = 0, the field is initially in a
coherent state with (A%)o = 10, the two-level system is in the
excited state, and we use noninteracting IC.

rxt

FIG. 7. Temporal evolution of g?(t) with an exponen-
tial time-dependent coupling: (a) switch on, K/y = —0.05,
to = 0; (b) switch off, K/y = 0.05, to = 7. Curve (c) rep-
resents g>(t) for the time-independent case [h(t) = 1]. In all
the cases 7y = 50, n = 80, § = 0, the field is initially in a
coherent state with (A%)o = 10, the two-level system is in the
excited state, and we use noninteracting IC.
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and g%(t) for the linear sweep, with noninteracting IC
but the field is initially in a thermal state. For this
case the IC are: (67)¢ = 0.173!, (Aj)o =0.19%1(5 + 1)1,
(ﬁgJ)o:(Fj)o:(IAj)o =0 for 0 < j < n. We took
7y = 50, n = 20 and resonance. We observe the same
change in frequency as the one obtained for the coherent
case. As can be seen, the frequency decreases as we de-
crease the values of c. Note that in all cases the mean fea-
tures of the curves compared with the time-independent
case are the same. That means that as we increase or de-
crease the intensity of the interaction we are effectively
changing the value of the Rabi frequencies.
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FIG. 8. Temporal evolution of (¢); with an exponential
time-dependent coupling: (a) switch on, K/y = -0.05,
to = 0; (b) switch off, K/v = 0.05, toc = 7. Curve (c) repre-
sents (6)¢ for the time-independent case [h(t) = 1]. In all the
cases 7y = 50, n = 40, 8 = 0, the field is initially in a thermal
state with <A°)0 = 0.3, the two-level system is in the excited
state, and we use noninteracting IC.

We stud
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y now the case of an exponential modulation

of the two-level system-field coupling. Thus

h(t) = { exp(—K(t —to) —

0 otherwise.

|K|T) for0< t <,

(6.2)

Choosing a negative (positive) value for K we can sim-
ulate the switch on (switch off) process.
and 6(b) we plot (6); with n = 80, 6 = 0, 7y = 50,

In Figs. 6(a)

|K|/y = 0.05. We have used the same IC as that in

Fig. 1. We observe that during the switch on process

[Fig. 6(a)] the period of the first oscillation before the
collapse increases with respect to the time-independent
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FIG. 9. Temporal evolution of g?(t) with an exponen-
tial time-dependent coupling: (a) switch on, K/v = —0.05,
to = 0; (b) switch off, K/ = 0.05, toc = 7. Curve (c) rep-
resents g2(t) for the time-independent case [h(t) = 1]. In all
the cases 7y = 50, n = 40, 8 = 0, the field is initially in a
thermal state with (A%)o = 0.3, the two-level system is in the
excited state, and we use noninteracting IC.
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case [Fig. 6(c)], as was predicted in Ref. [25]. On the
contrary, during the switch off process [Fig. 6(b)] we
observe that almost the same behavior is observed dur-
ing the collapse interval of time. However, the first re-
vival appears later and the period of the oscillations is
enlarged. In Fig. 7(a) we show g2(t). The behavior
is similar to the one described in Fig. 6. In Figs. 8
and 9 we plot the evolution of (6); and g?(t), respec-
tively, for noninteracting IC and the field initially in a
thermal state. For this case the IC are (67)o = 0.373!,
(Af)o = 0.37%1(j + 1)1, (N],)o=(Fi)o=(I)o = 0 for
0 <j<n. Wetookn=40,0 =0, 7y = 50. In Figs.
8(a) and 8(b) we plot the switch on-off processes, and
in Fig. 8(c) the time-independent case. We observe the
same behavior obtained for the field in a coherent state.

Thus, for the time-dependent case we observe a general
behavior that is independent of the time dependence: as
we increase (decrease) the coupling constant by means of
a linear or exponential function of time, an increase (de-
crease) in the frequency of the oscillations is observed.
These results, which were observed for (5); and g2(t),
are valid for the other RO. We have also seen that a fi-
nite number of equations are needed to obtain exact nu-
merical results since only a finite number of correlations
contribute essentially to the solution.

VII. CONCLUSIONS

Summarizing, we have presented a generalized version
of the JCH giving a description in terms of physically
relevant operators. Since an arbitrary function of time
has been included, this formalism allows us to study the
system even when the coupling is time dependent. Par-
ticularly, the solutions presented in Refs. [25,26] are also
included in our formalism, as a particular case of our
general results. The advantages of our approach results
from the following facts: (a) we have given a description
of the system in terms of three sets of relevant opera-
tors providing a way to handle the problem of data given
in terms of different physical magnitudes; (b) for one of
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these sets of relevant operators the temporal evolution
equations have been shown; (c) we have obtained invari-
ants of motion in terms of the Lagrange multiplier (i.e.,
intensive variables) which can only be constructed using
MEP; (d) the invariants of the motion we have found
restrict the possible values of the initial conditions; (e)
we have found two sets of dynamical invariants [one for
the time-dependent case and the other for h(t) = 1], and
expressed the nth-order coherence functions in terms of
these invariants of the motion (this means that the re-
lationships established for the initial state remain valid
for all the temporal evolution of the system, even if the
Hamiltonian is considered as a time-dependent one); (f)
these initial mean values have been properly evaluated
using a MEP density operator (as it was pointed out
previously [20,18], the initial conditions play a role as
important as the dynamics itself, although not all the
formalisms are in position to distinguish clearly which
are the pertinent and coherent set of initial conditions);
(g) an extension of a sort of quantized version of the
Bloch sphere in the dual space of Lagrange multipliers
has been obtained, converting the original noncommu-
tative operators structure into geometrical relationships
[see Egs. (36-38)]; (h) the importance of the correla-
tions in the generalized time-independent JCH has been
shown. Finally, we want to stress the fact that using the
MEP approach we have naturally obtained that the nth-
order coherence functions of the field (see, for example,
Ref. [30], pp. 327-330) are relevant operators. So, we
think that this embodying approach can give insight to
the Jaynes-Cummings Hamiltonian problem.
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