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In this paper we calculate the attenuation of high-frequency sound in clean type-Il supercon-
ductors near the upper critical field &,2. The approach used is a generalization of that used
by Brandt, Pesch, and Tewordt to calculate the density of states of a pure type-II supercon-
ductor. It is shown that the attenuation is strongly dependent on mean free path even if l» (0,
In the low-temperature limit we obtain a simple functional relationship between attenuation,
mean free path, and magnetic field.

I. INTRODUCTION

Recently there has been considerable experi-
mental and theoretical interest in the transport prop-
erties of clean (I » $„here I = g„7 is the electronic
mean free path and $, is the pure superconductor
coherence distance) type-II superconductors near
the upper critical field H,3. In contrast to the dirty
limit I «)0, where the transport properties near
H,& can be mell understood in terms of gapless su-
perconductivity, ' theoretical results in the clean
limit have proved much more difficult to obtain. This
was first pointed out by Cyrot and Maki~ who showed
that the series expansion in powers of the order pa-
l'anlatel', LL(l'), usually employed ill tile dll'ty llmlt
does not convex ge in the clean case and leads to un-
physical results.

Since then Maki, studying the different terms in
the expansion in powers of the order parameter,
noticed a similarity with a BCS superconductor
carrying R uniform cux'x'ent Rnd made an RnsRtz
based on these similarities. He claimed to sum in
this way the most divex'gent terms of the expansion
in powers of b,(r ). Maki used this technique to
calculate the transport properties of clean type-II
superconductors and found, for example, that both
the change in ultrasonic attenuation' and thermal
conductivity4 at H, a were proportional to (H, ~

—&)'
in contrast to the dirty limit which gives a linear
dependence. It should be pointed out that the
square-root dependence found in the Maki theory
occurs because of the similarity with the BCS the-
ory, which yields a linear dependence on h. In the
meantime, the ultrasonic attenuation has been mea-
sured by several groups 8 and the thermal conduc-
tivity by linen et al. 8 These experiments appeax
to be consistent with a square-x oot dependence near
II,~; however, the experimental results are strongly
dependent on mean free path which is not predicted
by the Maki theory.

The second theoretical approach to the theory of
clean type-II superconductors is due to Brandt,
Pesch, and Tewordte (BPT). These authors did not

use a power-series expansion, but were able to
calculate the single-particle Green's function of a
pure, E = ~, type-II superconductor to a high degree
of accuracy by using the periodicity of the known
solution of the order parameter in fields near H, z.
In their original paper BPT calculated the angular-
dependent density of states N(&u, 8) (here 8 is the
angle between the direction of propagation of a
quasiparticle p and the applied magnetic field),
which was found to be BCS-like only if ~=/ and is
gapless in all other directions. The BPT calcula-
tion was later generalized to the case of finite mean
free path by Brandt who used the Green's function
to calculate the field dependence of the magnetiza-
tion' and order parameter' near H, z, obtaining
good agreement with experiment.

It 18 des11Rble to hRve a f list-px'1nc1ples theox'y of
transport phenomena in clean type-II superconduc-
tors. Encouraged by the success of the calculation
of equilibrium properties by BPT we have general-
ized the theory in such a way that it is now possible
within this framework to determine the transport
properties near H, a. In order to facilitate compari-
son of theory with experiment, we have chosen, as
an application of the theory, to calculate the change
in attenuation of high-frequency longitudinal sound
near H, &,

"since it is well known'4 that, in th1s
case, the effect of dynamical fluctuations of the or-
der parameter is negligible. It is a straightforward
matter to determine the effect of fluctuations, if
necessary, using the same method. There is, in
fact, an example of such a calculation already in
the literature, namely, the work of Hibler and
Cyrot" on the electrical conductivity near H, a. Dis-
agreement between experiment and theory in this
case is probably due, ap the authors point out, to
the fact that they have implicitly assumed that &7'
» 1 (~ is the frequency of the wave) whereas in
current experiments, in the megahertz region,
(de «1. It mill be clear from the work of this paper
that, under these conditions, it is essential to re-
tain a finite mean free path even if /» Q.

In Sec. II we develop the theory of longitudinal
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sound in clean type-II superconductors using methods
similar to those used by BPT. In Sec. III the atten-
uation coefficient is calculated explicitly, and sim-
ple analytic expressions are derived in several
limiting cases.

II, GENERAL THEORY

In this section we outline the theory of attenuation
of a longitudinal sound wave in clean type-II super-
conductors near the upper critical field H„. It will
be assumed throughout that the vortex lattice pro-
duced by the nearly uniform magnetic field near H, 2

is static. The effect of fluctuations of the vortex
lattice on the longitudinal attenuation has already
been calculated by Caroli and Maki'4 and shown to
be negligible.

It is well known' that if ~, &nT, and ql»1, then
the attenuation coefficient is simply related to the
density-density correlation function; &, and q are
the frequency and wave vector of the sound wave,
respectively. As the sound wavelength is much
larger than the intervortex spacing, it is sufficient
to determine the spatial average of the correlation
function. The attenuation rate is then determined
by

2 ( 2 2
q ~up

In Eq. (1) pF is the Fermi momentum and v, the
velocity of sound. The function ([n, n]), (q, &,),
which is the Fourier transform of the volume aver-
age of the density-density correlation function, will
be obtained by analytic continuation of the thermal
product ([n, n]) (q, &uo) from the set of discrete
points iurp =$2+pT to p = M, $5.

The thermal product must be evaluated for the
mixed state of an impure type-II superconductor
near the upper critical field. However, for simplic-
ity, we limit the initial discussion to the case of
a pure type-II superconductor. Since near II,2 the
magnetic field inside the superconductor is nearly
constant, it can be approximated by its spatial aver-
age B. %e choose B in the z direction and repre-
sent it by the gauge A- (0, Bx, 0). Thethermalprod-
uct is decomposed by means of the Gorkov' factor-
ization; to this end, it is convenient to introduce
Green's functions defined by the equations

G (r» r„~)=exp(ie f A ~ ds)G(r2, r&, &o), (2)

G (ra —r„~)= exp(ie f ' A ~ d s )G (r2, rq, &) . (3)
y2

Here G(r» r„&u)= —(T fg(r2, t)g (r» 0)]) is the
Green's function for a superconductor in the pres-
ence of a constant magnetic field, and G is the
normal-state Green's function in the presence of a
constant magnetic field: The line integrals in Eqs.

(2) and (3) are taken along a straight line connecting
r, and rz. G (r2 —r» &) is well approximated by
the normal-state Green's function in zero field. '

Recently BPT have shown that G (r2, r„(u) has
the important property of being periodic in the sum
of its spatial variables, with the periodicity of the
flux line lattice. This is easily shown if we note
that the Gorkov integral equation for G can be
written

G'(r» r» ~) = G'(r, —r» ~) f—d'I d'm G'(r", —1, ~)

where

x V(1, m)G (m —1, —&o)G (m, r» u&),

(4)

V(1, m) = exp(2ie f A ~ ds)A(T)A*(m) .
It was assumed by BPT that near II„the order pa-
rameter is given by the Abrikosov solution of the
Ginzbur g-I.andau equations, that is,

A( ) P G e i%ye-eB(x-0/2sB)
ke (6)

x+G„(p--', [k+k'], —k —k')

p

x (2, V(p', k')Go„(p-p'-k--, ' k'), (7)

where V(p ', k '), the Fourier transform of V(1, m),
is given by

V(p', k') = &(p,')b, A 2(27(') exp[ —A (p„' +p,
'

)

(6)

In Eq. (6), A' is the spatial average of the square
of the absolute value of the order parameter and the
length A=(2eB) 2; k=n(2w)' aA ~. We note that
when H=H, » A= $(T), whereas when H=H„, A=~.
As the dominant contribution to most linear response
functions comes from the Green's function Ga(p, 0),

here k= (4iieB) n and n is an integer and 8=c =1
throughout. For simplicity we have used the form
of A(r) corresponding to a square lattice; as we
shall see, the results of this paper are independent
of the symmetry of the flux line lattice. Using Eq.
(6) it is easy to see that V(1, m) has the periodicity
of the vortex lattice with respect to the sum coordi-
nate. Therefore, from Eq. (4), G has the same
periodicity.

It is instructive at this point to give a brief out-
line of the approximate calculation of t" . Using
the periodicity of G, Eq. (4) is Fourier trans-
formed to give

G (p --', k, —k) = &, OGO(p) —G„(p -k)
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we will discuss the calculation of this function in
detail. From Eq. (I) we have

G'„(p, o)=G„'(p)-G.'(p)ZG'„(p--". k', -I ')

Here $))
-—p /2m —p, 8 is the angle between the di-

rection of propagation of the quasiparticle and the
static magnetic field, k, = 1/A, and the function W

is given by

p, V(p', k')G'„(p-p'-ak') (9)2v'

The magnitude of the coupling between G„(p, 0) and

G„(p, k '= 0) is determined by the integral

, v(p', I'~0)

= 6 exp [—A (-', 0' --, i 0„'0,')] «A

therefore, to a high degree of accuracy, all terms
other than A' = 0 may be neglected with the result.

vl/Rg2 ~ "-1
G„(p, 0) = i(()„—$(, +~ .

8
W

~&cgz sm8 &cps sx

When the quasiparticle momentum is parallel to B,
it sees a constant order parameter, and G„( lP I, 8 = 0)
reduces to the BCS Green's function with a gap 4
=()& I ), as we would expect; however, in all other
directions the quasiparticles have a finite lifetime
due to particle-hole scattering induced by the spatial
variation of the order parameter.

Using these results, and

I
G'-(p, 0& I»

I
G.'(I, k~ 0&l,

which can be proved by similar arguments, the at-
tenuation coefficient can be written

q pg 'f d(d
Im —, . [f ((d+ (d, ) —f ((d)]

88 pgon 3PFE g 2 &$

~
& & [n, sl ) ((I ~+a, (d+i f)& -&[~, n] & ((I (d+ ~, co -i&&], (14)

([n, a])(t(, ~+a, ~+il)=Rf
( ), G„,( j+j 0)('„,;~(j 0)

3

(q )s
G ~(@+a-v ))'()' o)G.(., a)(p-p ))2m

and z=+, -~&.
It is now straightforward to generalize the theory

to describe an impure type-II superconductor; in
Eq. (14), we simply replace (da j5 by (d + j/2~ and
6 by 6=Jh, where J is the Helfand-%erthamer
renormalization factor given by

where y= (2i(d„/k, v~ + i/k, l). However, as we only
consider the clean limit, where 8= I+0($()/I), this
effect may be neglected. '

III, EVALUATION OF ATTENUATION COEFFICIENT

ductor near H, a this condition can be met if &d, «109
cps. This assumption enables us to make use of
the transformation

r
()o 5'

g ao gp+vp &

p2dp sin8'd8™ d$~ d$~. , (17)
0 0 vga

where q = I p -p'
I

=
I p +p' —2'' cose' I. As the

dominant contribution to the integral comes from
P =p~, we may extend the lower limit of integration
in the first integral to -~. Then under the condi-
tions given above, the limits on the second integral
may also be extended to ~. The energy integrals
are now easily performed by contour integration if
we recall that

In this paper we limit our calculations of the atten-
uation, given, in general, by Eqs. (14) and (15), to
the case of high-frequency sound in particular we
assume qe~ greater than the width of Im 6
-1/~+ v'~ (s2/k, vF&. In a pure type-II supercon-

G„'„,„(p, o)

k~gp sin8 k'q gp sl.n8
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has only a simple pole in the (upper, lower) haif-
plane, respectively, at

L1T'b, &+i/21 + $o$o=~~ —+ — . —W
2 v k,vF sin6 k,v„sin8

a dwe obtan

ao = ($o+ ~+ i/2r)/k, v, sine,

ao = so(&+ & ),
sin8 = (1 —sinoo.'cos2$)'~o,

(23)

(25)

x[2Re Z(e;) -1]—2
k,vz sin8

zo zm & zo

zo zo

),)iver' ))'(z+~) —iw' ))'(z))))
zo zo

(21)

li(ao) = 1 -iv t . W'(ao)
k,versine

(22)

m' P,' ' dy t'd(u
— [f(~) f(~+-~.)]f(~, 8),

v,'p... 3m 2w) 2v

(2o)
where

f(~, 8) = [2a A(a, ) —1]

and Q.' is the angle between the direction of propaga-
tion of the sound wave and the magnetic field. In
deriving Egs. (17)-(25) we have also made use of
the fact that if qv~ » I/r + v 't (4 /k, vF) only those
electrons moving perpendicular to the sound wave
contribute to the attenuation. At arbitrary temper-
ature and frequency the attenuation can only be
evaluated numerically. Further analytic progress
is only possible if we make the additional assumptiom
that ~, « the width of Im Ga(p, 0), that is, ~, & 1/r
+ v'~o(b, '/k, vF). As we have already assumed (u,

&(t),/v~) [1/r+ v' (6 /k, vz)] and as in niobium v~/v,
= 10, we should not expect to obtain better than
qualitative agreement with experiment. We feel,
however, that the simple analytic results derived
in this manner describe the main features of the
change in attenuation near H, 2.

Keeping only lowest-order terms in &„we find

o

f(~, 8) = [2IteZ(a, ) -I]'-2~
~k,vF sin8

I K(ao) I'Imiv't'W(&o)
xBe Kzo lr'"N' zo+1k

E 8 2, k sing 2Imzm1/ag z

In the low-temperature limit, it is sufficient to re-
place f (&u) —f(&@+&@,) by ur, 5(&u). The integration
over & is then trivial to carry out with the result
that ao of Eq. (23) is given by

so=i/k, l si 8+ni & to(b./k, vF sin8) W(eo) . (27)

If we now use the relationship '

which may be written

~& W(ly) = 2&y+ [y'+ &(y)]'"} ',
where2'

2& c.(y) &4/w

E9. (27) can be solved with the result that.

(32)

W(a) =e ' erfc(-ta)

for z in the upper half-plane, where

erfc(- ie) = (2/v't ) f, e ' dt,

(23)

(29)

xo= 1/k, l+r,
where

2(~/k, t, )'
& sin'8 + 4(n/k, e~)'

(33)

and notice that if e is pure imaginary (z =ty) then

W(ty)=(2/v'")e' 1 e ' dt, (30)

it immediately follows that the solution of Eq. (27),
eo=ixo jsin8, is pure imaginary. Further, if we

make use of the inequality

2[y+( y'+ 2)'t'] '~ v't'W(iy) ~ 2[y+(y'+4)'t'] ',
(31)

o- 1/2

x
k l

+usln 8+4
k k l

~ (34)
C k,vp k, l

In this limit it is also possible to show that K(zo)
is real:

z
sin8 k,v), 4(h/k, v), ) + n sina8
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FIG, 1. Low-frequency, &, «(1/~+~ /kcvp), ultra-
sonic attenuation in clean type-II superconductors near

H, &
(bn") as. a function of & = n'~t (&/k, vg) kg.
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FIG. 3, Ultrasonic attenuation in clean type-II super-
conductors near &c2 at &, =~~10 sec and 7.'=1.51'K,
(An" ) as a function of (H,&

—B)/&, 2 for different values
of the mean free path.
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This expression can be used to compute the atten-
uation at any angle of propagation. We will only
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FIG. 2. Low-frequency ultrasonic attenuation in clean
type-II superconductors near H 2 at & =-1.51'K. (Dn")
as a function of (&,2 —B) IH„ for different values of the
mean free path. The values of kP quoted in the figure
are taken at &=&„.
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FIG. 4. Ultrasonic attenuation in clean type-II super-
conductors near &c& at kc(Hc2) l =440 and T =1.51'K.
(An ') as a function of (H, 2

—B)/H~2 for different values
of the frequency.
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FIG. 5. Low-frequency ultrasonic attenuation in cIean
type-II superconductors near H,2 at 2 = l.51'I, (DG. ) 2

and (6& ) as function of (&~2 —&)/&,2 at k, (&~2) I = 100
and 0 (H )/=440.

discuss in detail the cases of propagation parallel
and perpendicular to B.

When the sound wave propagates parallel to the
magnetic field, sin6=1, and it is easy to see that as
k, l »1,

as we have already pointed out, the magnitude of
the attenuation predicted by Eq. (39) should not be
interpreted literally. For example, as can be seen
by comparison with an exact numerical calculation,
the magnitude of b, o.'" predicted by Eq. (39) is too
large. In Fig. 3 we present the results of numeri-
cal calculations of (hot") for a frequency of m

~10' sec ' at a temperature of T=1.51'K. It can
be seen that the trend, as a function of mean free
path, and shape of the curves, as a function of
H, z-B, given in Fig. Dare retained in the exact
calculation, ' however, the magnitude of the attenua-
tion is much smaller. It can also be seen from
Fig. 3 that the attenuation at a given frequency be-
comes less purity dependent as the mean free path
increases, which has also been observed experi-
mentally. 7 Finally, in Fig. 4 we-see that in the
high-frequency limit the attenuation is strongly fre-
quency dependent. In all of the numerical calcula-
tions the physical parameters used were ~, which
was taken from Eilenberger's paper, "H,2(1.51 'K)
= 3625 G, 2~

v~ = 3.0&&107 cm/sec, and the density of
states N(0) = 6. 0&& 10"erg/cm'.

The final example we consider is when the sound
wave propagates perpendicular to B. In this case,
provided Av. » 1, which at 0, / = 100, for example, is
valid if (H, z 8)/H, ~~1-0 ', we have

x= 2 &sin2& +4 ) 40

(37)

Z(fx, ) = 1+ 2(~/a, v,)' . (36)
2

tx sin'8+ 2 (2+ o.)
&cV

(41)

Using the fact that in this ca,se Ix, l «1 and &(xo)

=4/v, we find and therefore

(39)
4(a/k, v, )'c.

2v„, tx sin'y + 2(b,/k, v~)'(2 + &)

Thus we have obtained the result that, in pure type-
II superconductors near H, 2, 4&" is a universal
function of the parameter I'= m'~ (6/k, vF) k, l. A

graph of this function is shown in Fig. 1. In Fig.
2 we plot (h&") as a function H, ~

—8 for field values
close to H, 2, and different values of the mean free
path. As can be seen from the figure (n, &")~ could
be considered to be linear in H, ~

—8 over a narrow
field range; and is also strongly mean free path
dependent. Both these effects are consistent with

experiment. Care, however, should be used in

comparing the predictions of Eq. (39) with current
experiments. First, at present, experiments have

only been carried out under the condition q/ &1; we

expect, however, that the main features of the at-
tenuation should be the same in this case. Second,

4(~ /u, v, )'a, l
s' isisk t+Sts/k, v )sk, t) ' (42)

that is,

2r, r-1 '~'
4n -2 — —tan

k,~, ~ r'-1 r+1

It is interesting to note that in this geometry the
expression for the attenuation contains terms pro-
portional to 6 and therefore (H, 2

—8)'~2; however,
as the second term in the expression dominates ex-
cept at fields arbitrarily close to II,z it is unlikely
that this behavior can be detected experimentally.
We might also point out that if I'=-1,' then Eq. (43)
becomes
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sn'=-(4/~) [2I/(I+r)]=(4/~) n, ~" . (44)

Equation (44) exhibits explicitly the anisotropy in
the attenuation. This is easily understood if we re-
call that the quasiparticle propagator depends
strongly on the direction of propagation of the quasi-
particle. In Fig. 5 the values of (6o.'")' and (h~')

are compared for two different mean free paths.
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