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TYPE II SUPERCONDUCTORS: CLEAN LIMIT” 

HILDA A. CERDEIRA?, W. N. COTTINGHAMS and A. HOUGHTON 
Department of Physics, Brown University, Providence, R.I. 02912, U.S.A. 

(Received 5 September 1969) 

Abstract-The attenuation of longitudinal sound in clean type I I superconductors, near H,,, has been 
calculated using a non-perturbative method. It is shown that at low frequencies the attenuation rate 
depends strongly on the direction of propagation of the wave, and on impurity concentration. 

1. INTRODUCTION 

IN THIS paper we present a procedure for 
calculating the transport coefficients of clean 
type II superconductors near H,, which does 
not depend on an expansion in powers of the 
order parameter. The theory is used to study 
the attenuation of longitudinal sound in pure 
Niobium in magnetic fields close to the upper 
critical field. It is shown that the attenuation 
coefficient of longitudinal sound depends 
strongly on the direction of propagation, and is 
markedly dependent on impurity concentra- 
tion even when ql 9 1 and &, 4 I, here q is the 
wave vector of the sound wave, 1 is the electron 
mean free path and ,& is the pure supercon- 
ductor coherence distance. 

2. THE ATTENUATION COEFFICIENT 

In the low frequency limit w, < rT,,, pro- 
vided ql %=- I, the attenuation coefficient of 
longitudinal sound is given by 

q,=Re 

In equation (1) q and CO, are the wave vector 
and frequency of the sound wave, pF is the 
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Fermi momentum and ([n, n]) (q, 03 is the 
volume average of the density-density cor- 
relation function. The correlation function is 
obtained by analytic continuation of the ther- 
mal product ( [n, n]) (q, ~,,)from the set of dis- 
crete points wO = 2mrrT to z = CO,- ii5 If we 
assume that, in the vicinity of H,,, the nearly 
uniform and constant magnetic field inside the 
superconductor can be replaced by its space 
average, the magnetic induction B, and treat 
the magnetic field dependence semiclassi- 
cally, the thermal product can be written 

([n,nl> (q,4= 2TC Id3rJd3r’ 

X v(rl, r2)Gw(rzr r’)G’L(r2--r)l (2) 

herew= (2n+l)rTandw+=w+o,. 
The Green’s function G,(r, r’) appearing in 
equation (2) satisfies the equation 

G,(r, r’) = G,O(r-r’) -s d3r, 1 d3r, 

xG,“(r-rI)V(rI, r,)G’L(r, -r,)G,(r,, r’), 
(3) 

G”(r -r’) is the normal metal Green’s func- 
tion in the absence of a magnetic field and the 
function V is defined by: 

V(rl, r2) = A(r e-ieB(zi+nXvl-~’ (4) 
1681 
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the magnetic field having been chosen to be in 
the z direction. 

It has been shown [ 11 that iterative solutions 
to equation (3) lead in certain cases to un- 
physical results even in the limit B + H,,; 
recently, however, Brandt et a/.[21 have solved 
equation (3) approximately by a method which 
avoids the iteration procedure. These authors 
note that when (H,,- B) -+ H,, the order 
parameter A(r) is given by the Abrikosov 
solution of the Ginzburg-Landau equations 

A(r) = I: C, e lnaY e-eB(z-an/2eB)2 
n 

(5) 

and therefore G (r, r’) when considered as a 
function of sum and difference coordinates, has 
the periodicity of the flux line lattice with 
respect to the sum coordinate. Fourier analyz- 
ing equation (3) and noting that the dominant 
contribution to G is obtained if V is replaced 
by ( V), an average over its sum coordinate 
they obtain in the infinite mean free path limit 

G,(P. k) 

(6) 

where the wave vector k, = (2eB)‘j2 is in- 
versely proportional to the spacing between 
ff ux lines, 

A2 = I@, 

&? = p2/2m -j-b 

6 is the angle between p and 3 and 

(7) 

If we restrict our calculations to the clean 
limit kc1 s 1, scattering effects due to im- 
purities are included in the theory by simply 
replacing w by i3 = w (1 + if271wj). Correc- 
tions to the order parameter and the electro- 
magnetic vertices are negligible to order 1 ik, I 

and 1 lql respectively. We should point out that 
as k, + 0 when T -+ T, this theory is not 
valid too close to the transition temperature. 
Making this replacement and performing the 
analytic continuation of equation (2) we obtain 

X [([n,~z])(q;~+~,+i/27,~+i/27) 

-([n;n])(q;w+o,+i/27,O-i/27.)] (8) 

where 

([n, n])(q;w+o,+i/2~, w-i/27) 

= 
2 (27r)3 I 

d3PGw+q+i,zJ~ + q, O)G~-~,~,(P, 0) 

x l- (T& 
[ I 

- G%+Og+i/27) (P + q-l- P’) 
7 

X Gk-t,2,)(P + P’MP’, 0) 1 (9) 

V(p’, 0) = (A/k,)22(2a)28(p~) e-(P!Z+V%z 

(IO) 

is the Fourier transform of (V} andf(o) is the 
Fermi function. 

In order to make further analytic progress 
we assume that 4~ > A2/kcVF. It is then 
possible to integrate over the magnitude of p 
and the poiar angle, with the result that 

where 

lcw,e) = (2ReK(&)-1)(2ReK(&+)--1) 

- 2 (A/k,v, sin @)z 
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z. is the solution of the equation 

zo+ = &I(~+%) 
K(G) = [l -i&(A/k,v, sinf?)2W(z.,,)]-1 

sin 8 = ( 1 - sin2 C#I sit? a) 1/2 

and (Y is the angle between q and B. Note that 
[2Re K(G) - l] = N(w, 0) is the angular 
dependent density of states found by Brandt 
et al. [2]. In deriving equation (12) we have 
made use of the fact that when qf 9 1 the only 
electrons contributing to the absorption are 
those moving essentially perpendicular to the 
direction of propagation of the wave. 

From the form of equation (12) it can be 
immediately seen that under the conditions 
specified above the attenuation will be strong- 
ly anisotropic. In particular we note that if 
sin 6 = 0, the density of states is singular and 
the function 

Z(w, 8 = 0) =+[l+ (w~-A~)/~~~-A~~] (13) 

the BCS coherence factor. In general the form 
of equation (12) is such that for an arbitrary 
geometry the attenuation coefficient can only 
be obtained by numerical computation. It is 
possible, however, to make further progress in 
the simple case of parallel propagation (qllB). 
If we assume W,T + 1, the usual experimental 
situation, then keeping terms to first order in 
o, we find 

[2Re K(zo) - 112 -2(A/k,~,)~ 

X Re K2(a)i&Wr(z,,) + (K(G) I2 c 

x iVGW(z,) -iGlV(zo*) 
.ZO--Zo* I]. (14) 

In the region of validity of the theory 

(H,,--B) S H,, the parameter (A/&u,) = 
( A/AscS) + 1 and therefore K(G) can be 
expanded in powers of (A/~,v,)~. Further if 
we use the property of the W(z) function 

iVGW(z*) = [iGW(z)]* (15) 

we find 

x 1-2(A/k,~,)~ 
[ 

[ 

k,f Km (i&W(G)) 

’ 1+ (A/kcvF)2k,lZm (iGW(a)) 

-ReiX&W’(z,,) 11 . (16) 

2. RESULTS 

The attenuation coefficient for longitudinal 
sound propagating parallel to the magnetic 
field in Nb at 4.2”K has been obtained from 
equation (16), by numerical computation, for 
three values of k,l. The results of this calcula- 
tion are shown in Fig. I, where (yT2 = (a, - (u#/ 
(cx,)~ is plotted vs. B/H,,. The physical 
parameters used in determining these curves 
were; A2, which was taken from Eilenberger’s 
paper[3], H,, (4.2”K) = 2680 G[4], V, = 
3.0 x 10’ cmlsec and the density of states [5] 
N(0) = 5.6 X 1V4 erg/cm3. We would like to 
point out the following features of Fig. 1: (1) 
aT2 varies markedly with mean free path even 
when kc1 9 1 and follows the trend found 
experimentally by Forgan and Gough [6], this 
is in contrast to the theoretical predictions of 
Maki[7], also shown in this figure, which are 
mean free path independent under these 
conditions; (2) (Y,~ is, apart from a small region 
close to H,,, a linear function of (H,,--B) 
down to fields B/H,, = 0.98 at which point it 
starts to deviate from straight line behavior 
this is also consistent with Ref. [6]. It is not 
possible at this time to make an absolute com- 
parison of theory with experiment as the only 
theoretical results we have are at a temperature 
of 4_2”K, whereas the available experimental 
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l 99 ~98 

B/H,* 

Fig. 1. The normalized attenuation in the mixed state at 4.2”K as a 
function of B/H,. 

datal6.81 is for temperatures of 2.02”K and 
1.3X. We do not expect, however. the abso- 
lute magnitude of the attenuation to change 
much in this temperature range, it would there- 
fore appear that the theoretical values of CY,.~ 
agree qualitatively with the experiment results 
of Forgan and Gough whose purest sample 
gives or2 2 0.4 at B/H,, = 0.98. A detailed 
discussion of these points together with calcu- 
lations of the attenuation as a function of 

direction of propagation for different tempera- 
tures will be given elsewhere. 
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