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Abstract. We present a calculation of the matrix elements of z n  between four-dimensional 
harmonic oscillator states. We show that a knowledge of the scalar product of two harmonic 
oscillator states of different frequencies is enough to generate the matrix elements of any 
power of z. These can be found by taking appropriate derivatives of the aforementioned 
scalar product. 

1. Introduction 

Experiments performed by Bayfield et a1 (1977) on hydrogen atoms in an oscillating 
electric field showed that resonant multiphoton transitions can be stimulated. This in 
turn enhances the atomic ionisation rate. These stochastic processes (Leopold and 
Percival 1979) cannot be explained by direct tunnelling, even considering the effects 
of crossing of Stark energy levels (Littman et a1 1976). This is the first experimental 
evidence for chaotic behaviour in a quantum dynamical system. It is, therefore, 
important to obtain an adequate theoretical description of this problem. The three- 
dimensionality of the system, however, poses formidable mathematical difficulties. 
Some authors (Blumel and Smilansky 1984, Jensen 1982, 1984) studied analogous 
systems represented by a one-dimensional hydrogen atom. They found stochastic 
ionisation only in the classical limit, while chaos is suppressed in the quantum 
mechanical treatment. This simplified model is clearly inadequate to explain the 
experiments described above (Bayfield et a1 1977). In order to accomplish this, exact 
solutions for the three-dimensional quantum problem are needed. The first step in 
this direction consists of calculating the matrix elements of z, and of any power of z, 
between quantum states of different energies. With these matrix elements the problem 
of ionisation of hydrogen atoms can be solved to any degree of accuracy using quantum 
maps (Hogg and Huberman 1983, Zavslavsky 1981). 

As the calculation of those matrices between states in the 1Nlm) representation 
becomes very difficult, we suggest solving the problem in the four-dimensional oscillator 
representation. We make use of the fact that a three-dimensional hydrogen atom is 
equivalent to a four-dimensional harmonic oscillator with constraints (Boiteux 1973, 
Kibler and Nkgadi 1983a, b, 1984). In this spirit it is possible to write the Hamiltonian 
as that of a set of coupled oscillators with time dependent coupling constants, which, 
later on, can be handled by different methods. In this representation the matrix elements 
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of the perturbation can be calculated between states of different n (the main quantum 
number of the hydrogen atom). The aim of this paper is to give explicit analytic 
expressions for those matrix elements and show how to generate matrix elements of 
higher powers of z. 

The remainder of this paper is organised as follows: in § 2 we present the four- 
dimensional representation of the hydrogen atom. In § 3 we calculate the matrix 
elements of z. In 9 4  we present a discussion on approaches to the solution of the 
time dependent Schrodinger equation. Finally, we summarise the work in 0 5 .  

2. Four-dimensional representation of the hydrogen atom 

Consider a hydrogen atom in three dimensions, in the presence of an electric field 
E ( t ) .  The Hamiltonian is given by 

where p is the reduced mass of the hydrogen atom and e the charge of the electron. 
The equivalent problem in four dimensions is found using the Kustaanheimo-Stiefel 
(KS) transformation of the configuration space (Boiteux 1973): 

where 

4 

r =  u t ,  
u = l  

subject to the restriction: 

R l q ) =  ( U l U q -  U4U1-l- U 3 U 2 -  U 2 U 3 ) 1 * ) = 0 ,  (2.5) 

which is necessary for the eigenfunction to be single-valued (Boiteux 1973, Kibler and 
Nigadi 1984). In order for the transformation to be canonical, the momenta must 
transform as 

Under the KS transformation, the Schrodinger equation for the unperturbed hydrogen 
atom can be written as (Boiteux 1973, 1982, Chen 1980, Kibler and NCgadi 1984, 
Landau 1958): 
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Equation (2.7) is the Schrodinger equation of a four-dimensional harmonic oscillator, 
whose solution is given by 

4 

*n,nl,n2,n3.n4(U1, ~ 3 ,  ~ 4 )  = n @ n , n , ( U i ) ,  (2.8) 

@n,n,( U i )  = Gn, exp[ - ( ~ / 2 f i ) w , , u f I ~ n , ( ( ~ n /  f i )1 /2Ui  1. 

i = l  

with 

(2.9) 

Here C,,,,, is a normalisation constant and H , , ( x )  is a Hermite polynomial. The 
frequencies, w,,, of the harmonic oscillators represented by (2.8) and (2.9) are related 
to the energy eigenvalues, E,,, of the hydrogen atom by 

4pw; = -4E,,, (2.10) 

with 

and 

n, + n, + n3 + n4 + 2 = 2n. (2.12) 

Here, ni is the ith quantum number of the four-dimensional harmonic oscillator. 
Equation (2.12) is a consequence from the invariance *(U) =*(-U) (Boiteux 1973). 
The constraint given by equation (2.5) was shown by Boiteaux (1982) to restrict the 
degeneracy of the corresponding eigenstates of the four-dimensional harmonic oscil- 
lator, to match the accidental degeneracy of the corresponding levels of the hydrogen 
atom. It is important to notice that the functions given by (2.8) and (2.9) do not form 
an orthogonal basis. This peculiarity introduces coupling between the eigenmodes 
even in the absence of an external perturbation (Kibler and NCgadi 1984, Chen 1982), 
and is a direct consequence of the constraint given by (2.10). 

3. The matrix elements 

3.1. The scaling operator 

We denote the basis functions of (2.8) by 

(3.1) 

where 

In, nJ = @ n , n , ( U , ) ,  (3.2) 

with @ , , n t ( u )  given by (2.9). In order to ca.:ulate the matrix e.2ments we define a 
scaling operator S ( p )  in one dimension, as (Englefield 1972): 

f ( P x )  = P - l ' z s ( P ) f ( x L  for p>O (3.3) 

In, n,)  = (w, /wo) -1 '4~( (w, /wo)1 /2)11 ,  n,) (3.4) 

therefore 
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where the scaling operator has the form: 

S ( P )  = exp[(f+x d / a x )  log PI, (3.5) 

and w, = w o / n ,  with wo = 2e2/h. 
Let us start with the matrix element of z, which in the four-dimensional representa- 

tion is given by 32( n, { nl}i u2( u1 u3 + u2u4)lm, { m,}), to show how the method works. 
The extra term 16u2= 16(u:+u:+u:+u:) comes from the volume element in four- 
dimensional space, which we have to include since we are not incorporating it in our 
definition of the scalar products (see (3.11)). Since the wavefunction is separable in 
the U, variable, we only need to calculate matrix elements like (n, n,lu:lm, m,), with 
k = 0 , 1 , 2  and 3. In § 3.3 we show that the knowledge of (n, n,/u:lm,  m,)  for k = 0 and 
1 is enough to generate all powers. Let us start with k = 1. Using (3.4) we have 

(3.6) (n, n,I uI m, m,)  = (nm)i/4(1, niIS+((wn/wo)’’2) uS((wm/wo)”2)11, m l ) .  

It is easy to see that 

S ( P ) u  = P W P )  
s+ (P- ’ )  = S ( P )  

S ( a ) S ( P )  = S ( a P ) .  

(n, n,Julm, m,)= ( ~ ) I / ~ m l / ~ ( l ,  nllS((n/m)”2)ull ,  m,). 

and 

Therefore, (3.6) becomes 

(3.7) 

Since the functions 11, n,) form a complete set, (3.7) can be written as 

(n, n,lulm, m,)= ( m n ) - ’ / 4 C  (1, nllS((n/m)1’2)ll,  N I ,  /lull,  mJ (3.8) 
I 

which becomes: 

(n, n,lulm, m,)  
= ( nm)’I4( h / p w , )  ‘ I 2 {  ($mf)’’2( 1, n, I S (  ( n /  m )  ‘/’)I 1, m, - 1) 

+[t (m ,  + 1)]”~(1, nflS((n/m)”2)[1,  m, + 1)). (3.9) 

We notice that the problem reduces to calculation of (1, nnlS((n/m)”2)ll ,  m,), which is 
equal to (n, n,lm, m l ) .  We devote § 3.2 to the evaluation of these functions. 

(3.10) 

(3.11) 
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To calculate the integral in (3.11) we make use of the following relations (Gradshteyn 
and Ryzhik 1980): 

H2,,(x) = (-1)"22"n! L;'I2(x2) ( 3 . 1 2 ~ )  

H2,+l( x )  = (- l)n22n+1n !xL!/'(x2), (3.12b) 

where the Lz(x) are the associated Laguerre polynomials. It is clear from (3.11) that 

s;;,"c = 0 (3.13) 

when ni and mi have different parity, independent of n and m, since the integrand 
will be an odd function. Let us consider two cases: when ni and mi are even, and 
when they are odd. 

3.2.1. n, and m, even. After substitution of ( 3 . 1 2 ~ )  into (3.11), and change of variables, 
S2,"i can be written as: 

(3.14) 

Therefore, we find for the basic matrix element S:$'i (Gradshteyn and Ryzhik 1980): 

where F ( a ,  /3; y ;  z)  is the hypergeometric function, which in this case reduces to a 
polynomial, since a and /3 are negative integers. In (3.15) the Gamma function is 
defined by: 

r ( n + t )  = (2n - 1 ) ! ! ~ " ~ / 2 " .  

In the limit n + m, the matrix elements of (3.15) are the scalar products of two harmonic 
oscillator eigenstates of the same frequency. Hence it must have the limiting value 

lim S"P"~ = 
n - r m  

n,m 8 n z , m c '  

It is straightforward, though tedious, to verify that (3.15) satisfies this condition. 

3.2.2. n, and mi odd. Following the same steps as before, but using (3.126) for the 
Hermite polynomials, it is easy to find for the basic matrix elements: 

S",.", = -- ( - )(m,-1)/22(n,+m, ) /2  (nm)3/4 2 3 ~  (: ~ n"> ( m , + n , ) / * - l  

( n ,  ! mi ( m  + n)3'2 n, m 

(3.16) 
which again reduces to 8,,,,,, when n + m. 
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(3.17) 

where +@@means to add a term like the previous one within the parentheses with 
i and j permuted. It is understood that S:;; should be made equal to zero whenever 
ni or mi becomes negative. Using the constraints on the four-dimensional harmonic 
oscillator, given by (2.12), it is easy to convince oneself that there are eight equivalent 
terms to (3.17), when we consider all the permutations of the ni's. 

3.3. Generation of matrix elements of the form ( n ,  niluklm, m i )  

In order to calculate the matrix elements of any power of z, it suffices to calculate 
matrix elements like ( n ,  nilu:lm, mi ) ,  k = 0, 1, 2, 3 , .  . . . It is easy to see that we can 
generate those matrix elements from the knowledge of S:;,"i of a new variable. Let us 
define: 

a 

S : ? ~ ( Y )  = C ? , n , C m , m ,  du exp[-y(~/2fi)(mn + m m ) u 2 1  

(3.18) 

(3.19) 

While the odd powers are generated by: 

where, in analogy with (3.9): 

(3.21) 
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An expression for S:;,"i(y) is easily calculated in the way described in 8 3.2, and we 
find the following. 

(a) When ni and mi have different parity, independent of n and m 

s:;,"J(y) = 0. 

(b) When ni and mi are even 

mi ni.  - ( m i + n i )  1 
2 

x F (  - I ,  -- 
2 '  

where 

( m  + n)'Y(Y - 2) 
W =  

[ ( m + n ) y - 2 m ] [ ( m + n ) y - 2 n ] '  

(c) When ni and mi are odd 

x F ( - 7 , - ~ ; -  ( m i - l )  ( n i - l )  ( m i + n i )  1 
2 

with w given by (3.23). 

(3.22) 

(3.23) 

(3.24) 

4. Approaches to the solution of the time dependent Schriidinger equation 

The Schrodinger equation for the problem of a hydrogen atom in the presence of a 
time dependent electric field is given by 

( H , , + e E ( t ) z ) Y ( r ,  t )  =ih(a/at)Y(r,  t ) .  (4.1) 

Applying the KS transformation ((2.2) and (2.6)), we obtain: 

ih(a*/at)(u, t ) =  Y ( U ,  t )  (4.2) 

with r given by (2.4). If we expand the wavefunctions, in the basis functions given 
by (2.8) (Chen 1980), 

where X,,,,,) means sum over n and over all possible permutations of n,, n,, n3 and 
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n4 subjected to the constraint given by (2.12) and (2.13). The time dependent Schrodin- 
ger equation for the a,,{,,,)( t)’s becomes 

= C 4Enan,(n,}(t)(m, {mtlln, {nil) 
n , l n , }  

+ 2eE ( t )  an,,,,}( t ) (m ,  Imt )I ( U1 + UZ%)I n, { nl})*  (4.4) 
n,{ n, } 

Since qn,{,,} do not form an orthonormal basis, u,,J,,J(?) are not unambiguously defined. 
In the previous section we showed that, in general 

(m, {m,)ln, { n J )  f 0 

(m, {mtlln, {nil)= S{m,},{nt) 

for m # n 
and 

for m = n. 

Therefore the matrix Hamiltonian is not diagonal, even for the unperturbed terms of 
(4.4). Although, in this way, we lose some generality, we can control our approximations 
since our matrix elements are exactly calculated. As presented, the problem can be 
solved using quantum maps if we use for the time dependence a series of 6 function 
pulses. In this case the matrix elements of all powers of z will be necessary, as shown 
in Hogg and Huberman (1983) and Zavslavsky (1981). 

Another approach to the solution of the Schrodinger equation would be to second 
quantise the Hamiltonian of (4.2) in the basis given by (2.8). It has been shown by 
Kibler and NCgadi (1984), and by Chen (1982), that the unperturbed part of the 
Hamiltonian reduces to a set of coupled oscillators. In future work we intend to 
generalise their approach to the perturbed case. The time dependence of the perturba- 
tion can be handled by finding a suitable canonical transformation which renders the 
Hamiltonian time independent (Heitler 1954), or using the Magnus expansion 
(Pechukas and Light 1965). After this is done the problem may be solved to any 
desired degree of accuracy. 

It is important to notice that we have not discussed the continuum states of the 
hydrogen atom which are necessary to calculate the ionisation rate. Barut et a1 (1979) 
and Kibler and NCgadi (1983b) showed that these continuum states in three dimensions 
are also connected with continuum states of a four-dimensional harmonic oscillator 
with negative potential energy, accompanied by the same constraint. Studies of the 
matrix elements between continuum and discrete states is in progress. 

5. Summary 

The problem of the hydrogen atom in the presence of a time dependent electric field 
poses great computational difficulties. To solve it, we suggest as an alternative method, 
the use of the four-dimensional harmonic oscillator representation of the hydrogen 
atom (Boiteux 1973, Kibler and Ntgadi 1983a, b, 1984, Chen 1980). With this problem 
in mind, we present the first calculation of the matrix elements of z k ( k  = 1 ,2 ,3 , .  . .) 
between four-dimensional harmonic oscillator states of different frequencies. These 
can be generated from a single basic matrix element: (m, m , / n ,  n l ) ,  for which we find 
explicit expressions (3.13)-(3.16), and (3.19)-(3.24). With these results, the problem 
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of the hydrogen atom in a time varying external electric field can be solved to any 
desired degree of accuracy, as outlined in b4. Finding adequate solutions to this 
problem is important because of recent experimental evidence concerning the existence 
of chaos in this type of system (Bayfield et a1 1977). 
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