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Phase transitions on a multiplex of swarmalators
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Dynamics of bidirectionally coupled swarmalators subject to attractive and repulsive couplings is analyzed.
The probability of two elements in different layers being connected strongly depends on a defined vision range
rc which appears to lead both layers in different patterns while varying its values. Particularly, the interlayer
static sync π has been found and its stability is proven. First-order transitions are observed when the repulsive
coupling strength σr is very small for a fixed rc and, moreover, in the absence of the repulsive coupling, they also
appear for sufficiently large values of rc. For σr = 0 and for sufficiently small values of rc, both layers achieve a
second-order transition in a surprising two steps that are characterized by the drop of the energy of the internal
phases while increasing the value of the interlayer attractive coupling σa and later a smooth jump, up to high
energy value where synchronization is achieved. During these transitions, the internal phases present rotating
waves with counterclockwise and later clockwise directions until synchronization, as σa increases. These results
are supported by simulations and animations added as supplemental materials.
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I. INTRODUCTION

Describing the evolution of real living and/or material
systems is a very interesting subject due to its importance in
many fields such as epidemiology [1], chiral microswimmers
[2], neuroscience [3,4], and so on [5,6]. Part of this objective
has led many researchers to focus on the interactions be-
tween entities in different environments. These observations,
which have been extended to the study of interactions among
species such as humans, animals, and micro-organisms, have
led to the establishment of mathematical models that can
describe the dynamics of living or material systems or their

ensembles [1,2,5]. Synchronization behaviors [7–13], aggre-
gation or clustering [8,9,14–18], and chimeras states [9,19,20]
have been observed and have led to many applications in
science and technology.

Synchronization dynamics can be described as a state of
coherent and identical behavior of interacting elements in a
given environment. This phenomenon was first observed by
the physicist Christiaan Huygens in mutually coupled peri-
odic oscillators in 1673 [10]. Since then, various works have
investigated this phenomenon in different particular situations
[7–9,21–30].
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Thus, in order to simulate these behaviors into real situ-
ations, systems that can describe collective displacement in
space were developed and called mobile oscillators [17,31–
35]. The extension of these works allowed us to define others
that can synchronize and swarm when spatial and internal
dynamics are coupled, and they were called swarmalators
[14]. Several other works have allowed a partial understand-
ing of swarmalator systems [15,16,18,36–38]. H. K. Lee
et al. [38] investigated the steady-state patterns of population
of swarmalators, where the interaction distances among the
nodes have a finite cutoff sometimes named vision range [17].
Within their results, they found barlike patterns. G. K. Sar
et al. [18] studied the swarmalators under time-dependent
phase interactions. They found unknown asymptotic states,
like static π , and mixed phase wave states under the dou-
ble action of attractive-repulsive competitive phase couplings.
This paper aims to combine both the use of the finite cutoff in
the interaction distance and the combination of attractive and
repulsive coupling in multilayer swarmalators.

Coupled systems show many behaviors within which one
of the most impressive is the sudden and abrupt change that
occurs as an explosive collective phenomenon called explo-
sive synchronization [39,40]. The first-order transition has
long been an intriguing behavior characterized by an abrupt
phase change from an asynchronous to a synchronous state.
In 2011, it has been argued that this phenomenon can happen
when there is correlation between the natural frequency of the
nodes of a network and their degree for scale-free network
[39]. However, in Refs. [40,41] the authors showed that it is
possible to obtain a first-order transition with no correlation
between the natural frequency and the degree of the nodes.
This result was also generalized in Refs. [42,43], where the
authors investigated different mechanism to generate frustra-
tion with lead to abrupt transitions.

Moreover, this transition can be observed under the effect
of a random coupling [44] or in the case of a perturbation
(noise) on the natural frequency of the entities of a Kuramoto
oscillator network [45]. This can also be observed in a multi-
plex and adaptive pair oscillator network [40]. In addition, the
first-order transition to synchronization was also extended to
multiplex networks of identical [46] or dissimilar layers [47]
and to the combined effect of the natural frequency distribu-
tion and the interlayer delay [48]. The second-order transitions
as well as the abrupt or explosive ones can be observed in
some real systems such as a school of fish or a flocking bird
evolution [49–53] or insects motions [54,55]. A review of
their applications and roles in biological processes was done
recently by E. F. W. Heffern et al. [56]. However, the chosen
coupling topology can be a key element in achieving explosive
synchronization [39,41,43] and many other phenomena such
as chimeras states [57–60].

Within the many important issues in the theory of networks
appears that of the influence that the interlayer interaction
between elements has in the dynamics of multilayer networks.
Several phenomena have been investigated as varied as show-
ing the importance of the topology of the multiplex to obtain
a second-order transition to synchronization [58,61,62] or the
increase of the synchronization probability [8,60,62–65].

Apart from the importance that these studies have to un-
derstand all the states of the dynamics, there are examples

where swarmalators dynamics may be useful to explain nat-
ural behaviors such as motile bacteria, when in close contact
with surfaces, use a mechanism referred to as “swarming” to
access new sources of nutrients [66]. Swarming colonies of
bacteria show dynamics such as low curvature of trajectories,
circular vortices, cooperative motility and alignment of cells,
etc. [67]. Cells communication attenuates growth to control
the organization of communities [68].

In an attempt to understand what the mobility of these
systems may represent in nature here we study a two layer
network of swarmalators, described by the model presented
in Sec. II, where we analyze the influence that attractive and
repulsive coupling have in the dynamics. We find a rich set of
behaviors, including rotational behavior of the internal phases
leading to synchronization.

This work has four main parts. From the present introduc-
tion in Sec. I, we present in Sec. II the model under study
and schematic descriptions of the interactions between the two
layers highlighting the vision range. In Sec. III, the analysis
tools allowing the characterization of the obtained dynamics
are described; meanwhile, Sec. IV presents the numerical
results and the study of the stability between the two layers.
Section V is devoted to the conclusion and some perspectives.
Finally, in the Appendix, we present a glossary of the dynam-
ical phases.

II. MODEL

We present a model for a system of oscillators whose
phase and spatial dynamics are coupled used to describe
the dynamics of some living systems, called swarmalators
[14,16,18,37,69]. The generalized equations are given as fol-
lows:

Ẋi = vi + 1

N

N∑
j �=i

[Fatt (Xj − Xi )W (θ j − θi ) − Frep(Xj − Xi )],

(1)

θ̇i = wi + K

N

N∑
j �=i

Hatt (θ j − θi )G(Xj − Xi ), (2)

with i, j = 1, . . . , N , where N is the total number of swar-
malators, θi is the phase of the internal dynamics of each
element, Xi = (xi, yi )T is the spatial coordinate of the ith en-
tity, and vi and wi are the velocity and natural frequency of
each element, respectively. Then the dynamics of the system
is defined by the spatial angle φ describing the position given
by φi = arctan(yi/xi ) and the coupled phase θi

In this model there are three explicit functions defined by
Fatt , Hatt , and Frep which respectively represent the attractive
and repulsive interactions between entities in the network
[14,16]. The competition between Fatt and Frep gives rise to
clusters of particles with sharp boundaries, in agreement with
many biological systems [36]. The functions W and G rep-
resent the influence that the internal dynamics have on the
movement of the oscillators and vice versa. Thus, the model
presented previously in Eqs. (1) and (2) can be rewritten as
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FIG. 1. Schematic representation of two coupled layers and their
range interaction.

follows in the absence of interlayer coupling:

Ẋi = vi + 1

N

N∑
j �=i

{
Xj − Xi

|Xj − Xi| [A + J cos(θ j − θi )]

− B
Xj − Xi

|Xj − Xi|2
}
, (3)

θ̇i = wi + K

N

N∑
j �=i

sin
(
θ j − θi

)∣∣Xj − Xi

∣∣ . (4)

In Eqs. (3) and (4), A and B are constant (A = B = 1), K
is a constant which, multiplied by 1/|Xi − Xj |, represents the
coupling between the phases of the internal dynamics, and the
interaction between the space and phase dynamics is modu-
lated by the term A + J cos(θ j − θi ). Depending on the value
of J , there can be attraction or repulsion between entities.
For simplicity, we choose identical swarmalators vi = v and
ωi = ω, and therefore we take v and ω equal to zero without
loss of generality.

Five main spatial configurations of entities are possible as
a function of the pair (J, K ), as presented in Ref. [14]. Many
other patterns have been observed trying to show the effect
of the coupling parameters on the aggregation and synchro-
nization of swarmalators. Jiménez Morales has shown that this
system can have a dynamically synchronized or asynchronous
state and many others due to the form of the repulsive interac-
tion term [70].

The effect of the phase coupling parameter was also ob-
served in Refs. [44,69], where it was shown that the coupling
disorder could lead to a synchronized state. Sar et al. [18] stud-
ied the competitive behavior between the positive and negative
values of phase coupling. According to this description, the
authors showed that we can have mixed patterns, clusters, and
synchronization.

This study will consider two coupled layers of identical
N1 = N2 = N elements free to move in a two-dimensional
space inside each layer. The interlayer coupling is assumed
to be between an element of a layer with those elements in the
other layer within the vision or interaction range, rc, centered

at the projection of the coordinates of the first element on the
second layer and vice versa, as described in Fig. 1.

To express the connection between the layers, let us define
the new evolution of the state variable θ by introducing the
interlayer coupling strength as follows:

θ̇m
i = Km

N

N∑
j �=i

sin
(
θm

j − θm
i

)∣∣X m
j − X m

i

∣∣︸ ︷︷ ︸
intra layer dynamics

+Cm
att

(
X m

i j , θ
ml
i j

)+Cm
rep

(
X m

i j , θ
ml
i j

)
,

(5)

where m = 1, 2 identifies the layer, θm
i represents the internal

phase of element i in layer m, θml
i j = θm

i − θ l
j , and X m

i j = X m
j −

X m
i ,

Cm
att = σa

Nm
a

N∑
j �=i

F l
a (i, j)

sin
(
θ l

j − θm
i

)
Dm

i j

,

︸ ︷︷ ︸
Attractive inter layer dynamics

(6)

Cm
rep = σr

Nm
r

N∑
j �=i

F l
r (i, j)

sin
(
θ l

j − θm
i

)
Dm

i j

,

︸ ︷︷ ︸
Repulsive inter layer dynamics

(7)

where σa > 0 and σr < 0 are the interlayer coupling strength
for attractive and repulsive interaction respectively. Nm

a is
the number of elements with attractive interaction inside the
vision range in layer m and Nm

r those in the layer m which
are not inside the vision range and therefore have a repulsive
interaction. F l

a and F l
r are the N × N matrices representing

the attractive and repulsive interlayer interaction, respectively.
These functions show the connectivity (attractive or repulsive)
created by the ith element with those in the opposite layer:

F l
a (i, j) =

{
1 if j (l ) ∈ �

(l )
i(m)

[
r (l )

c

]
,

0 otherwise

F l
r (i, j) =

{
1 if j (l ) /∈ �

(l )
i(m)

[
r (l )

c

]
,

0 otherwise

(8)

where l = (1, 2), m = (1, 2), and �
(l )
i(m)

[r (l )
c ] is the set of ele-

ments inside the domain [vision range r (l )
c ] created around the

projection of the ith element of layer m onto layer l . Indeed,
for a chosen element in layer 1 (green one), the corresponding
position in layer 2 (also green and not necessarily occupied
by a swarmalator) is considered the center of a vision range
of radius rc. This vision range defines the space where the
elements inside are connected through attractive coupling to
a chosen one in layer 1. The swarmalators are globally con-
nected inside each layer. We also assume that the Euclidean
distance between swarmalators and the center of the vision
range in the same layer is defined by dl

i j , and this must be
different from zero and less than some value, rc, to avoid
collision between entities.

The distance between the two layers is supposed to be a
constant d0. Therefore, the Euclidean distance between the ith
element of layer 1 and the jth swarmalator in layer 2 is defined
by Dm

i j [Eq. (9)],

Dm
i j = |X m

j − X l
i | =

√(
dm

i j

)2 + (d0)2. (9)
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Therefore, according to the above description, the connec-
tion between the green element with the red elements (or
the yellow one when analyzing the lower layer) inside the
vision range is attractive [see Eq. (6)] and repulsive with those
outside [see Eq. (7)]. This is to show the effect of connected
elements on the whole dynamics of the layers when they are
subject to a vision range interaction.

III. ORDER PARAMETERS

In order to investigate synchronization in our network,
we define different types of order parameters to quantify the
degree of intra- and interlayer phase synchronization. Besides
that, we define the complex order parameter S [14–16,70] to
find out the correlation between the phase and spatial dynam-
ics.

The Kuramoto order parameter is defined as [71]

Rej� = 1

N

N∑
i=1

e jθi , (10)

where j2 = −1 and � is the average of the phase of all ele-
ments in the network. However, when the ith and jth particles
are synchronized, then the norm R tends to be 1. Then, if
R < 1 (or near zero), then there is no phase synchronization.

To measure the correlation between the spatial angle φ

and the internal phase dynamics θ of swarmalators, we define
another order parameter S:

S±e j	± = 1

N

N∑
i=1

e j(φi±θi ), (11)

with S being the maximum value between S+ and S−. Then,
S = max(S+, S−) is the complex order parameter, and if S =
1, then there is full correlation between φ and θ of elements
in the same layer, while if S ≈ 0, then it indicates lack of
correlation.

The following intra- and interlayer synchronization errors
were used to analyze the phase synchronization inside each
layer and between them, respectively. Let us define Em and
Eml , the intra- and interlayer root mean square errors, as fol-
lows:

Em =
√√√√ 1

N2

N∑
i, j

(
θm

i − θm
j

)2
, (12)

Eml =
√√√√ 1

N2

N∑
i, j

(
θm

i − θ l
j

)2
. (13)

In order to characterize the existence of static and active
states, Eq. (14) defines the average velocity of elements in
each layer,

Vm = 1

N

N∑
i=1

vm
i , (14)

where m = (1, 2) and vm
i =

√
(ẋm

i )2 + (ẏm
i )2. However, when

Vm ≈ 0, the elements describe static (or quasistatic) dynamics,
while for Vm > 0, the dynamics is active [69,72].

IV. NUMERICAL RESULTS

We consider a system of N1 = N2 = N = 50 identical
swarmalators. For the numerical integration, Heun’s method
algorithm was used with a time step dt = 0.05, a transient
time tmin = 90% of the final time such that the last 10%
correspond to 2 × 105 iterations. The spatial initial conditions
were uniformly distributed between [−1; 1], and the phase
was distributed between [−π ; π ]. This section shows the dy-
namics of the layers (the case of layer 1 is presented here (see
Fig. 2) while some results for the case of layer 2 are shown in
Fig. 1 to 12 of the supplemental material [73]) when the vision
range is applied and the mutual effect of the intra- and inter-
layer attractive and repulsive coupling force. To better analyze
the effect of the attractive interlayer coupling σa, we have
considered the case where the repulsive interaction between
the two layers does not exist. This highlights the existence
of a first-order-like phase transition to interlayer phase syn-
chronization. Cluster, static synchronization and many other
patterns have been observed which express the influence of the
vision range rc and that of the attractive and repulsive coupling
strength between them.

A. Dynamics of two layers

The notions of attractive and repulsive interaction forces
are essential in studying the evolution of swarmalators and are
responsible for the aggregation phenomenon. They allow links
between the different entities of the network to be created.
In this study, the swarmalators in the layers are subject to
an all-to-all attraction and repulsion. However, the interaction
between an entity in one layer and those in the opposite layer
is restricted by a vision range rc (see Fig. 1). This interaction,
as described by the equations of the above model [Eq. (5)],
tells us about the nature of the interaction between the entity
under consideration and those of the opposite layer.

1. Influence of vision range on static and active dynamics

In order to understand the influence of the vision range
in the dynamics of a network with two layers, we recall
that it depends on the set of parameters (J, rc, σa, σr ), which
are shown in Fig. 2, where the spatial and polar distribution
of phases are represented. Varying them, the system passes
through different active and passive dynamics states of syn-
chronization and aggregation. Notice that the characterization
of the dynamics states of the swarmalators [18] can be made
based on the quantifiers grouped in Table I.

We can see in Fig. 3 a generalized evolution of these
quantifiers (R, S, V ) as a function of the vision range rc for
different values of the set (J, σa, σr ) for the case of layer 1.
We can observe in these evolutions the simultaneous effect of
these three parameters on obtaining static or active intralayer
dynamics of the swarmalators.

Indeed, for a weak value of the intralayer spatial coordi-
internal phase coupling strength J = 0.1 and for an attractive
interlayer coupling strength lower than the repulsive interlayer
coupling strength (σa < |σr |), we can see that this leads to a
transition from SA to SS without any intermediate states [see
Fig 3(a)]. In fact, the phase synchronization is followed by the
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FIG. 2. Patterns formation of N = 100 swarmalators’ dynamics according to Refs. [14,16] for chosen values of quadruplet (J, rc, σa, σr ).
The first row is the scatter plot in (X,Y ) space, where the colors represent the value of the internal phase θ . The second row is the polar
representation of the internal phase: [(a) and (f)] Static sync (SS) state for (J, rc, σa, σr ) = (0.6, 2.55, 0.5, −0.5); [(b) and (g)] static async (SA)
state for (J, rc, σa, σr ) = (0.1, 2.5, 0.1, −1); [(c) and (h)] static phase wave (SPW) state for (J, rc, σa, σr ) = (0.1, 0.5, 1, −0.1); [(d) and (i)]
splintered phase wave (SpPW) state for (J, rc, σa, σr ) = (0.6, 0.1, 0.1, −1); and [(e) and (j)] active phase wave (APW) state for (J, rc, σa, σr ) =
(0.99, 0.1, 0.5, −0.5). The intralayer phase coupling is K1 = K2 = −0.1 for the cases (a), (b), (c), and (d) and K1 = K2 = −0.6 for case (e),
and the color indicates the phase θ (see Fig. 1 in the supplemental material for the case of layer 2 [73]).

formation of other states according to the following scheme:

SA → SS → AMPW → SPW → SA

rc = 0.1 → 0.65 → 1.5 → 1.65 → � 2.

The scenario is similar for Figs. 3(b) and and 3(c) with
the difference that the increase of the phase coupling strength
J (for J = 0.6 and J = 0.99) and the prevalence of the inter-
layer repulsive coupling over the interlayer attractive coupling
strength (|σr | > σa) favors the correlation between the inter-

FIG. 3. Order parameters R (blue), correlation S (black) in the right axis, and mean velocity V (red) in the left axis as a function of vision
range rc for different values of triplet (J, σa, σr ). The first row is for (σa, σr ) = (0.1, −1), the second one corresponds to (σa, σr ) = (0.5, −0.5),
and the last row to (σa, σr ) = (1, −0.1) with K1 = K2 = −0.1 (see Fig. 2 in the supplemental material for the case of Layer 2 [73]).
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TABLE I. Emerging patterns with order parameters R, S, and V
used to quantify the states.

R S V Patterns states

≈1 0 < S < 1 �0 Static sync (SS)
0 0 0 Static async (SA)
0 �= 0 (≈1) 0 Static phase wave (SPW)
0 ≈1 �=0 Splintered phase wave (SpPW) or

Repulsive mixed phase wave (RMPW)
0 �=0 (<1) �=0 Active phase wave (APW)
�=0 (<1) �=0 ≈0 Static π (SPI)
�=0 (<1) ≈1 ≈0 Static cluster sync (SCS)
�=0 �=0 �=0 Attractive mixed

Phase wave (AMPW)

nal and spatial phase S and disfavors this time the apparition of
intra- and interlayer phase synchronization R < 0.95; we can
remark here the absence of both intra- and interlayer phase
synchronization. Nevertheless, in these figures the following
transitions are observed:

SpPW → RMPW → SPI → SpPW

rc = 0.1 → 0.25 → 1.65 → � 2.

Considering the complementary effect of the attractive and
repulsive interlayer coupling strengths such as (|σr | = σa), we
can see in Figs. 3(d) and 3(e) a clear progressive transition
towards intra- and interlayer phase synchronization, while
although not so clearly it also appears in Fig. 3(f). Here phase
synchronization is obtained when the vision range increases,
whatever the value of the spatial coupling J is taken between
0 and 1.

For a small value of the phase coupling J = 0.1, even
though the attractive and repulsive interlayer coupling
strength are identical, there is a progressive transition to phase
synchronization as shown in the following diagram:

SA → APW → SPW → AMPW → SS

rc = 0.05 → 0.3 → 0.8 → 1.7 → � 2.

When J increases (J = 0.6 and J = 0.99), static clusters
are formed. For low values of the vision range (rc = 0.1), we
have the formation of the SpPW [Figs. 3(e) and 3(f)]. For an
increase of this radius (r = 1.8), the number of clusters tends
to decrease, giving way to the formation of the SPI (with 2
clusters) followed by the SS. We note here the weak presence
of an active state due to the almost null variation of the
average velocity when 0.5 < rc < 1.2 and rc > 2 [Fig. 3(d)].
However, when J = 0.6 [Fig. 3(e)], we observe a correlation
between the spatial phase φ and the internal phase θ for
rc < 2. This persistence of the correlated state between the
phases here reflects the existence of SpPW states for rc < 0.5
followed by the SPI when 0.5 < rc < 2 [Fig. 3(e)], the transi-
tion scheme to static phase synchronization in Fig. 3(e) is as
follows:

SpPW → SPI → SS

rc < 0.5 → 0.5 < rc < 2 → rc � 2.

In Fig. 3(f), the SpPW is, however, followed by the for-
mation of the SCS [18] (see Fig. 3 and video 1 in the
supplemental material the snapshot of SCS state [73]) at rc =
0.5 before reaching the SPI and SS. This state appears for the
triplet R �= 0(< 1), S ≈ 1, and V ≈ 0,

SpPW → SCS → SPI → SS

rc < 0.5 → rc = 0.5 → 0.5 < rc < 2 → rc � 2.

However, considering that the repulsive coupling is such
that |σr | < σa, we obtain the evolutions of Figs. 3(g), 3(h)
and 3(i). From these evolutions, the synchronization is as
quickly reached as in the case of Figs. 3(d), 3(e) and 3(f).
Nevertheless, we can see that when the spatial coupling J
increases (J = 0.99), the synchronization region decreases.
Indeed, for J = 0.1 [Fig. 3(g)], we observe a synchronization
state when rc � 1.65. This state is preceded by the formation
of MPW, SPW, and SA:

SA → RMPW → SPW → AMPW → SS

rc � 0.1 → 0.25 → 0.5 → 1.45 → rc � 1.65.

In Fig. 3(h), we observe an absence of SPW and MPW
when J = 0.6 and a slight reduction of the synchronization
width (rc � 2). The transition to synchronization is as fol-
lows:

SpPW → SPI → SS

rc � 0.3 → 0.95 → rc � 2.

In contrast to Figs. 3(g) and 3(h), in Fig. 3(i), J = 0.99 does
not favor static states’ formation when rc � 2.5. Nevertheless,
we have the formation of SPI states when rc = 1.5, and of
SCS rc = 0.6 and synchronization appears when rc � 2.55.
These states are preceded by the SpPW for rc < 0.3,

SpPW → SCS → SPI → SS

rc � 0.3 → 0.6 → 1.5 → rc � 2.55.

In addition to the states described earlier, we noticed that
the transition observed in Figs. 3(d) and 3(g) pass through
a formation in space of an attractive dynamics with R �= 0,
S < 1, V > 0 and respectively for rc = 1.7 and rc = 1.45,
while the formation of clusters passes through a repulsive
dynamics with R = 0, S ≈ 1, V > 0 [Figs. 3(b), 3(c) and
3(g)] with rc = 0.25. These states were called a mixed phase
wave corresponding to an attractive (AMPW) and repulsive
(RMPW) [18].

Note that in Fig. 3(a), the phase synchronization obtained
when 0.4 < r < 1 is intralayer and not interlayer. To better
appreciate the synchronous behavior of Fig. 3, we have plotted
in Figs. 4 the evolution of the interlayer phase difference
as well as the intralayer (E1 and E2) and interlayer (E12)
synchronization errors as a function of the vision range for
some values of spatial coupling strength J and the interlayers
coupling strengths (σa, σr).

From all the data shown in these figures, we notice that the
transition to intralayer synchronization and interlayer occurs
for the vision range rc � 2. However, the weakly value of the
spatial coupling J is not advantageous to lead the systems to
interlayer phase synchronization. That is why in Fig. 4(c) we
do not have a zero value of the interlayer error (E12 �= 0),
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FIG. 4. Evolution of the interlayer phase difference [(a) and (b)]
and mean error [(c) and (d)] as a function of the vision range rc for
chosen values of spatial phase coupling strength J . E1 and E2 are
respectively the intralayers errors of L1 and L2, E12 is the interlayer
error of synchronization. This was plotted for [(a) and (c)] J = 0.1,
σa = 0.1, σr = −1 and in [(b) and (d)] J = 0.1, σa = 0.5, σr = −0.5
with K1 = K2 = −0.1.

but we only have phase synchronization (E1 ≈ 0 and E2 ≈ 0)
inside each layer for a small region rc < 1. This result implies
that the existence of intralayer phase synchronization is not a
sufficient condition to achieve interlayer phase synchroniza-
tion. However, it is essential to have it. This achievement of
phase synchronization also depends on the chosen values of
systems parameters like the intra- and interlayers coupling
strengths. According to Figs 4(a) and 4(c), both systems are
intralayer synchronized when J = 0.1 and σa < |σr | when
0.4 < rc < 1 and antisynchronized between different layers.

2. Interlayer static sync PI (ISSPI)

As we just saw, depending on the mutual influence of the
layers, there is no interlayer phase synchronization, but it
exists an interlayer antiphase synchronization [Figs 5(a) and
5(b)] which can be seen in Figs. 4(a) and 4(c). The antiphase
synchronization in swarmalators was described in Ref. [18] as
a SPI state if this appears with a small spatial displacement
of elements for a system with a single layer. Since this work

FIG. 5. Snapshot of the the phase of swarmalators for different
values of J: (a) antiphase synchronization between L1 and L2 for
(J, rc, σa, σr ) = (0.1, 0.65, 0.1, −1) and (b) phase synchronization
between L1 and L2 for (J, rc, σa, σr ) = (0.6, 2.5, 0.5, −0.5).

FIG. 6. ISSPI dynamics. (a) Scatter plot showing the ISSPI dy-
namics with the distance (d0) between layers; (b) time evolution of
phase of entities on layer 1; (c) time evolution of phase of entities on
layer 2; and (d) phase distribution of nodes in the two layers, with red
for layer 2 and blue for layer 1. This was plotted for J1 = J2 = 0.6,
rc = 1.5, σa = 0.1, σr = −1, and K1 = K2 = −0.1 (see video 2 in
the supplemental material [73]).

treats the case of two mutually interacting layers, we call this
effect the interlayer static sync π (ISSPI) state [see Fig. 6(a)].

We are now going to consider a configuration where
elements inside each layer formed two clusters that are in-
dependently static and synchronous, with a phase difference
between them equal to π (intrastatic π ) and also a phase
difference equal to π with those of the opposite layer showing
an interlayers antiphase synchronization (see Fig. 6).

To summarize, the ISSPI state is described by the following
properties:

(i) P1: There is a static PI state inside each layer. This
means we have the formation of two clusters inside each layer
with a phase difference equal to π between them [Figs. 6(b)
and 6(c)].

(ii) P2: A cluster in layer 1 synchronizes with a cluster in
layer two which is formed by the set of swarmalators at a
distance rc centered at the projection of a given element in
the cluster in layer 1 and the same for a cluster on layer 2
[Fig. 6(d)].

(iii) P3: The phase difference between the lower clusters of
layer 1 and the upper one of layer 2 is equal to π [Fig. 6(d)].

These three properties allow us to describe the ISSPI state,
which is observed in Fig. 6, where we have a formation of
two static clusters (C1 and C2) inside each layer, as shown by
the evolution of the internal phase of the swarmalators. We
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can see the phase difference �θ = π between the opposite
clusters of each layer.

3. Stability analysis of ISSPI

According to the first property, P1, let X̄i
m be the center

of mass of each cluster inside layer m and ςi the number of
elements in the set of swarmalators inside the ith cluster of
layer m. Then we can write

X̄ m
i = 1

ςi

∑
j∈ςi

X m
j (i = 1; 2). (15)

When the synchronized clusters appear in both layers, we
can apply the properties P2 and P3,

inter

{
θ1

1 = θ2
1

θ1
2 = θ2

2

intra

{
θ1

1 �= θ1
2

θ2
1 �= θ2

2

. (16)

Using Eq. (4) for each cluster on each layer, we have

˙̄X m
i = 1

N

⎧⎨
⎩ X̄ m

j − X̄ m
i∣∣X̄ m

j − X̄ m
i

∣∣ [1+Jm cos
(
θm

j −θm
i

)]− X̄ m
j − X̄ m

i∣∣X̄ m
j − X̄ m

i

∣∣2
⎫⎬
⎭

θ̇m
i = Km

N

[
sin

(
θm

j − θm
i

)∣∣X̄ m
j − X̄ m

i

∣∣
]

+ σa

Nm
a

sin
(
θ l

i − θm
i

)
Dm

12

+ σr

Nm
r

sin
(
θ l

i − θm
i

)
Dm

12

i �= j and l �= m. (17)

Let us use dl
i j , defined in Sec. II: dl

i j = |X̄ l
i − X̄ l

j | i �=
j, (l = 1; 2), then

static state ⇒
{

˙̄X 1
1 = 0

˙̄X 2
1 = 0

, (18)

and, therefore,

dl
i j = 1

1 + Jl cos
(
θ l

i − θ l
j

) . (19)

Using Eq. (16), we can say that the maximum spatial
distance between the two clusters inside a lth layer (without
interaction with another layer) is lower or equal to dl

π , where
dl

π is the value of dl
i j for (θ l

i − θ l
j ) = π [18]:

dl
π = 1

(1 − Jl )
. (20)

It means that the minimum value of vision range rc where
static synchronization appears inside each layer is such as
rc � 1

(1−Jl ) (also without interaction with another layer). This
was demonstrated as a necessary condition for synchroniza-
tion inside each layer [18]. Now, due to the interaction
between the two layers, we showed that the relation between
the maximum distance of the cluster inside each layer is given
by

dm
π = 1 − Jl

1 − Jm
dl

π (m, l = 1; 2). (21)

In this case, we can simply express the minimal vision
range rc � 1

(1−J ) . This evolution shows us the second-order

transition to phase synchronization inside each layer and be-
tween the two layers, as shown in Figs. 3 and 4. However,
to analyze the stability of ISSPI, we define the error of syn-
chronization εi between the ith clusters in different layers as
follows:

εi = θ2
i − θ1

i (i = 1; 2). (22)

Then its time derivative is

ε̇i = θ̇2
i − θ̇1

i . (23)

Let us take �θm = θm
2 − θm

1 (m = 1,2), the phase differ-
ence between the two clusters in layer m.

Using Eq. (5) in the ISSPI, where the number of clusters is
N = 2 (in the two layers) with N1

a = N2
a = 1 and N1

r = N2
r =

1, the time derivative of the error becomes

ε̇i = g(θ ) + (σa + σr )
sin

(
θ1

i − θ2
i

)
D2

12

− (σa + σr )
sin

(
θ2

i − θ1
i

)
D1

12

, (24)

with g(θ ) = K2
2 [ sin(�θ2 )

d2
π

] − K1
2 [ sin(�θ1 )

d1
π

].

For θ2
i − θ1

i near zero, we can write

ε̇i = g(θ ) + (σa + σr )
(−εi )

D2
12

− (σa + σr )
εi

D1
12

. (25)

Knowing that one of the conditions to have ISSPI state
is first having a static PI state inside each layer. This means
�θ1 = �θ2 = kπ (k ∈ Z) ⇒ g(θ ) = 0.

The Eq. (25) becomes

ε̇i = (−εi ) (σa + σr )

(
1

D2
12

+ 1

D1
12

)
, (26)

the solution of Eq. (26) is expressed as

εi(t ) = exp

{
−
∫

(σa + σr ) f (rc) dt

}
, (27)

where

f (rc) =
(

1

D2
12

+ 1

D1
21

)
and Dm

12 is defined by Eq. (9). The expression of the solution
of Eq. (27) shows that, since f (rc) > 0, the ISSPI is always
stable if σa + σr � 0 and the error, εi(t ), between both layers
converges to zero as long as

∫
(σa + σr ) f (rc) dt is large.

However, in the case �θ1 = �θ2 �= kπ ⇒ g(θ ) = G �= 0
and f (rc) = f > 0, the error defined by Eq. (25) can be
rewritten:

ε̇1 = G − ε1(σa + σr ) f (rc). (28)

The generalized Lyapunov function can be defined by the
quadratic form of the error as

Q =
∑

i

Qi (i = 1; 2), (29)

with

Qi = 1
2 (εi )

2. (30)
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FIG. 7. Convergence of the mean error. |εanal| and |εnum| are
respectively the analytical error (in blue) which is the solution of the
Eq. (26) and numerical error (in black) described by Eq. (22); the red
curve is the function g(θ ) describes in Eq. (24). This was plotted
in the ISSPI conditions with J = 0.6, K1 = K2 = −0.1, σa = 0.1,
σr = −1, rc = 1.5.

The time derivative of Lyapunov function is given by

Q̇i = ε̇i.εi = εi.G − (εi )
2(σa + σr ) f (rc),

Q̇i � |εi||G| − (εi )
2(σa + σr ) f (rc), (31)

for σa + σr �= 0, we can write

Q̇i � − (σa + σr ) f

[
|εi| − |G|

2(σa + σr ) f (rc)

]2

+ G2

4(σa + σr ) f (rc)
.

For σa + σr � 0, the time derivative of the Lyapunov func-
tion becomes

Q̇i � GM, (32)

where GM = max[ G2

4(σa+σr ) f (rc ) ].
It is established that the system defined by Eq. (28) is

practically stable [7,74] since the time derivative of the Lya-
punov function in Eq. (32) is bounded by a positive constant.
According to Sekieta and Kapitaniak [75] and Fermat and
Solis-Perales [76], in practical synchronization, the error dy-
namics is not converging to zero but to a sufficiently small
value that can be considered as the tolerance domain of the
synchronization condition. The results for our system are
shown in Fig. 7.

B. Influence of repulsive interaction (σr)

The interaction between the elements of the different layers
highlights the attractive and repulsive forces as described in
Eqs. (1) and (5). This is done through the intra- and interlayer
attractive and repulsive coupling forces (σa, σr ). As shown
previously, the attractive interaction allowed us to highlight
the existence of an intra- and interlayer phase synchronization
by keeping constant the repulsive coupling force σr . However,
we found that for specific values of the repulsive coupling
force (by fixing the attractive coupling σa), the state of phase
synchronization could no longer be reached, leaving room for
desynchronization. Although reflecting the repulsion between
the entities out of the vision range and the considered element

of the opposite layer, the variation of the interlayer repulsive
coupling lets us perceive the formation of static and active
state dynamics of the swarmalators in layer 1. As described
above, the transition to synchronization in some cases passes
through the formation of intermediate state that clearly high-
lights the effect of attractive and repulsive coupling called the
mixed phase wave (MPW) shown in Fig. 8. Indeed, we notice
in Fig. 9 the formation of active states (SpPW and APW, in
red) and static states (SS in blue and SA and SPW in white).

It can be seen that increasing the repulsive coupling fa-
vors the formation of active states while decreasing it favors
the formation of static states. This characterizes the fact that
the continued existence of repulsion between the elements
of the network creates a permanent agitation between them.
The opposite process is observed as the vision range and the
interlayer repulsive coupling strength σr decrease.

In addition to the formation of static and active states, the
evolution of Fig. 10 highlights that the transition from phase
synchronization to an asynchronous state when the repulsive
coupling force σr decreases is of the first order. Thus, we can
notice two evolutions on the Fig. 10, one in blue highlighting
an evolution of the order parameters for a value of σa = 1.5
and red corresponding to a value of σa = 2. From this evo-
lution, we can see that the increase of the attractive coupling
σa increases the inter- and intralayer phase synchronization
area [Fig. 10(a)]. However, this increase in repulsive coupling
favors the correlation [Fig. 10(b)] between the spatial phase
φ and the internal phase (θ ) in both layers for a thresh-
old Sm � 0.97 (m = 1, 2) when |σr | � 0.5. A detailed study
shows that these transitions depend on the initial conditions,
as can be seen in Fig. 10 and Figs. 5–7 of the supplemental
material [73]). A thorough study of the regions of parameters
where explosive transitions occur is beyond the scope of this
work.

Figures 11 shows the mutual influence of the interlayer
repulsive coupling σr and the vision range rc on the inter- and
intralayer evolution toward the phase synchronization state.
For a growing repulsive coupling evolution, we observe an
intralayer decoherence state (blue) for R1 less than 0.95 [see
Fig. 11(a)] and an interlayer one characterized by an inter-
layer error E12 �= 0 [Fig. 11(b)] when the vision range is low
(rc � 2). On the other hand, the decrease of the coupling σr

expressing the progressive absence of agitation in the sys-
tem favors this time a first-order transition (when σr � 0.25)
towards the state of phase synchronization (cyan) intralayer
shown by R1 � 1 and interlayer (E12 ≈ 0) [Figs. 11(a) and
11(b)]. This transition towards synchronization suggests the
progressive dominance of the attractive interlayer interac-
tion forces over the repulsive ones as the vision range rc

increases.

C. Influence of attractive interaction (σa)

In contrast to the repulsive interlayer coupling σr , increas-
ing the attractive interlayer coupling σa favors not only the
formation of static states but also the convergence of the
system elements towards a state of phase synchronization, as
can be seen in Fig. 12, where the formation of static states is
represented in blue and active ones in red.
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FIG. 8. Mixed phase wave state under the influence of quadruplet (J, rc, σa, σr ) in the two layers with the corresponding (θ, φ) space.
AMPW appears with J = 0.1 for [(a) and (e)] σa = 0.5, σr = −0.5, rc = 1.7 and [(b) and (f)] σa = 1, σr = −0.1, rc = 1.45. RMPW appears
for [(c) and (g)] J = 0.1, σa = 1, σr = −0.1, rc = 0.25, and [(d) and (h)] J = 0.6, σa = 0.1, σr = −1, rc = 0.25. The color represents the
internal phase θ .

This influence of the attractive coupling is also observed
in intra- and interlayer synchronization dynamics, as seen in
the evolution of Fig. 13, the phase synchronization (cyan) and
decoherence (blue).

It should be noted that the synchronous behavior obtained
is intra- and interlayer. For R1 � 1 and/or R2 � 1, we obtain
intralayer synchronization when the vision range rc � 2 and
σa � 0.2 [Fig. 13(a)]. To verify the existence of interlayer
synchronization, Fig. 13(b) shows the variation of the inter-
layer synchronization error E12.

FIG. 9. Influence of repulsive coupling σr and vision range rc on
the active and static dynamics on layer 1. Red shows the active states:
SpPW, APW, and the the static states: SS in blue and SPW and SA
in white. This was plotted using the mean velocity for static state
Vm ≈ 0 and active Vm > 0. The intralayer phase coupling is chosen
K1 = K2 = −0.1 and the spatial one J1 = J2 = 0.1 with σa = 1.5
(see Fig. 4 in the supplemental material for the case of layer 2 [73]).

D. Absence of repulsive coupling: First-order transition

The simultaneous presence of attractive and repulsive cou-
plings reveals second-order transitions to inter- and intralayer
phase synchronization (see Fig. 3). However, to understand
these transitions, we cancel the repulsive coupling, namely
σr = 0, and only the attractive interaction is active (σa �= 0).
Thus varying σa the entire system presents a first-order tran-
sition to phase synchronization, as shown in Fig. 14. The
graphs in Fig. 14 show the evolution of the order parameter
and correlation for the first layer [Figs. 14(a) and 14(b)] for
different values of rc such as rc = 0.75, rc = 1, and rc = 3.
Comparing these curves, we conclude that (i) the first-order
transition is obtained for large-enough values of rc and (ii)
for small values of rc there is a high correlation between the
spatial phases, φi [Eq. (11)], and the internal phase θi for
each ith node, namely S1 = 1, for an interval of values of σa

that increases while rc decreases. Here the coupled layers will
achieve a second-order transition to phase synchronization as
the probability of having nodes with whom interact attrac-
tively becomes very low since the interaction surface, defined

FIG. 10. Effect of the repulsive coupling strength σr on the
transition to intralayer phase synchronization for a particular initial
condition. (a) Order parameter R1 and (b) correlation S1 of layer 1;
as a function of the repulsive coupling σr for different values of the
attractive coupling. Red is for σa = 2 and blue for σa = 1.5. This was
plotted for J1 = J2 = 0.1, K1 = K2 = −0.1 and rc = 1.
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FIG. 11. Mutual influence of couple (σr , rc) on each layer. (a) Or-
der parameter R1 of layer 1; (b) interlayer error of synchronization
E12. Cyan shows the synchronous state and the blue one the asyn-
chronous state. The intralayer phase coupling is K1 = K2 = −0.1
and the spatial one J1 = J2 = 0.1 with σa = 1.5 (see Fig. 8 in then
supplemental material for the case of layer 2 [73]).

by the circle with radius rc, decreases (see Fig. 1). Also, the
antagonist movements of R1 that increase while S1 decreases
in all the considered cases coupled to the relation given by
Eq. (11) show that each θi synchronizes only with its φi. At
the same time, there is no synchronization between the θi as
Ri < 1 in those cases.

Using the Hamiltonian formalism as given by Eq. (33),

Hm
i = − Km

2Nm

Nm∑
j �=i

cos
(
θm

j − θm
i

)
, (m = 1; 2), (33)

based on the mean-field XY model [72,77,78], we can see
that the internal phase dynamics, independent of the layer,
undergoes a series of transitions before stabilizing at synchro-
nization, as seen in Fig. 15. These figures show the energy for
both layers for rc = 0.75, rc = 1, and rc = 3. For the latter, the
system undergoes an explosive-type synchronization at σa ≈
0.2. When 0.09 � σa � 0.33 for rc = 1 and 0.09 � σa �
0.63 for rc = 0.75, there appear two significant transitions: (i)
for rc equal to 0.75 and 1, a drop, down from Hm

i � 0.037 to
Hm

i � 0.0362 with i = 1, 2, and (ii) a jump, up to Hm
i � 0.039

with m = 1, 2 to an apparent static complete synchronization,
for rc = 3. All cases show complete synchronization for σa >

0.09. Finally, we may notice that the range of the parameter σa

between the two transitions increases while rc decreases. This
is due to the fact that the probability of connecting strongly

FIG. 12. Influence of attractive coupling σa and vision range rc

on each layer’s active and static dynamics. Red shows the mean
velocity of active states, Vm �= 0, and blue the static ones, Vm ≈ 0.
The intralayer phase coupling is chosen as K1 = K2 = −0.1 and the
spatial one J1 = J2 = 0.6 with σr = −0.1

FIG. 13. Mutual influence of the couple (σa, rc) on each layer.
(a) Order parameter R1 of layer 1; (b) interlayer error of synchro-
nization E12. Cyan shows the synchronous state and blue is the
asynchronous state. The intralayer phase coupling is chosen K1 =
K2 = −0.1 and the spatial one J1 = J2 = 0.6 with σr = −0.1 (see
Fig. 9 in the supplemental material for the case of layer 2 [73]).

depends on the vision range, and it takes stronger attraction to
synchronize when the range of attraction is smaller.

For a better understanding of the behavior of the energy
Hm

i for the first and second layers, let us concentrate on the
case rc = 0.75 and compare it to that of rc = 3 as shown by
the mean velocity of each case [Figs. 15(c) and 15(d)].

The graphs in Figs. 15(c) and 15(d) are divided into dif-
ferent sections as a function of σa: (A1) and (B1), where the
coherence instability is shown by the variation of the mean
speed shown in Figs. 15(c) and 15(d). We recall that this
is the region of Fig. 14(a) for which R1 and S1 are almost
zero, meaning there is no synchronization on theta and no
correlation between θi and φi. Increasing σa, we encounter
(A2) and (B2) where augmenting the value of the attractive
coupling strength increases the speed of the nodes in each
network with different and opposite consequences, as can be
seen by the behaviors of the energy, depending on the value
of the vision range: For rc = 0.75, the energy function H1 just
dropped, while in Fig. 15(d) for rc = 3, it suddenly jumps to
its highest value where all nodes synchronize. In both cases,
the abrupt variations of the speed are canceled quickly for
rc = 3 as shown in Fig. 15(d), while for rc = 0.75, the nodes
speed diminishes slowly as σa increases [Fig. 15(c)]. Consid-
ering this sudden jump to H1 = Hmax � 0.039 in Figs. 15(a)
and 15(b) and V1 � 0.0011 in Fig. 15(c), it comes out that
all nodes in each layer flick from a low nonzero speed to a
high-speed state to suddenly agglomerate and also stick them-
selves together in a rest position with a negligible speed. Thus
we may conclude that, with an attractive coupling between

FIG. 14. (a) Order parameters R1; (b) correlation S1 of layer 1 as
a function of the attractive coupling strength σa for different values of
vision range rc in the absence of repulsive coupling strength (σr = 0).
Red is for rc = 1, green for rc = 0.75, and blue for rc = 3. This was
plotted for K1 = K2 = −0.1, σr = 0, J1 = J2 = 0.1 (see Fig. 10 in
the supplemental material for the case of layer 2 [73])
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FIG. 15. Evolution of the mean energy and velocity of each layer
as a function of the attractive coupling strength σa for different values
of the vision range rc. (a) Energy of layer 1; (b) energy of the layer 2;
(c) mean velocity of the layer 1 for rc = 0.75; and (d) mean velocity
of the layer 1 for rc = 3. Red is for rc = 1, green for rc = 0.75, and
blue for rc = 3; this was plotted for K1 = K2 = −0.1, σr = 0, J1 =
J2 = 0.1.

two sets of swarmalators, if the vision range is large enough,
then both layers could act as one single network and achieve
explosive and long-range internal phase synchronization that
defines a sharp high-speed transition to a sudden and static
agglomeration state. In the (A2 and A3) area for lower values
of rc, the energy H1 is almost at its lowest fluctuating value as
well as the mean speed V1. In these domains, an counterclock-
wise rotating wave appears that propagates on the θs, which
is shown by the graphs in Fig. 16(a) for σa = 0.25 and by the
video (see video 3 in the supplemental material [73]).

The region (A4) starts with the second jump, which is sud-
den, abrupt, and explosive but not strong enough to lead the
nodes to complete synchronization. If we compare the mean
speeds before the first and the second jumps in Fig. 15(c),
then it is clear that the second transition is weaker as the swar-

FIG. 16. Rotational waves. From the left to right (a) counter-
clockwise, σa = 0.25; (b) clockwise, σa = 0.80; and (c) σa = 0.85,
respectively. The plot of this graph is done by using only the last 0.4
of the 5.105 total number of iterations. This is for σr = 0, rc = 0.75,
K1 = K2 = −0.1, σr = 0, J1 = J2 = 0.1 (video 3 and 4 in Ref. [73]).

FIG. 17. Effect of (σa, rc) on the transition to synchronization
when σr = 0. (a) Order parameter R1 of layer 1; (b) mean energy
H1 in layer 1. Cyan shows the synchronous state, blue is the asyn-
chronous state, and the last, yellow, shows the intermediate state
between the two transitions in the evolution of the mean energy. The
intralayer phase coupling is chosen K1 = K2 = −0.1 and the spatial
one J1 = J2 = 0.1 with σr = 0 (see Fig. 11 in the supplemental
material [73] for the case of layer 2).

malators do not have enough energy since the speed before the
second transition is very low. While in region (A3) the system
rotates counterclockwise, during this transition, the coupled
swarmalators perform an unstable clockwise rotating wave
on the internal phase dynamics propagates in the opposite
direction than that in Fig. 16(a) where the nodes’ movement
are essentially random even if the general motion seems to be
a rotation [see Fig. 16(b)]. It seems as if the system uses the
rotational wave as a way to save energy before the big jump
to synchronization occurs, for σa < 0.5 (counterclockwise),
and it also appears to use it to lose the speed it had acquired to
jump (clockwise), in order to synchronize for σa ≈ 0.8, where
the random movement seems to have disappeared. The do-
main (A5) and (B3) are internal phase synchronization zones
where all the nodes are progressively sticking themselves
together and form one body in each layer as the value of σa

increases. Hence, the entire system achieves a sudden and
long-range internal phase synchronization.

From the description of Figs. 15 and 16, we partially con-
clude that in the absence of the repulsive coupling, namely
σr → 0 and for rc � rcritic where rcritic is the critical value
below which the energy presents the drop, internal phase
synchronization occurs in two steps: The first one corresponds
to the domains (A2) and (A3) and the second one to (A4) and
(A5). The first step [(A2) and (A3)] corresponds to the loss of
motion in space but with the appearance of a rotational wave
that propagates on the θ js in an counterclockwise direction
as shown in Fig. 16(a) (see the video 3 in the supplemental
material [73]). The second step [(A4) and (A5)] corresponds
to the increase of the energy until it progressively reaches
its maximum H1 � 0.039. The jump and the convergence to
phase synchronization pass through perturbed (with space ag-
itation) and unperturbed (and static in space) rotational waves
that propagate on the θ js and move in a clockwise direction
as shown in Figs. 16(b) and 16(c) (see the video 4 in the
supplemental material [73]).

Varying rc and σa simultaneously gives us the graphs
shown in Fig. 17. Figure 17(a) shows the internal phases order
parameter R1 that shows two domains: a blue area where
there is phase decoherence and the phase synchronization
in the cyan region. On the other hand, Fig. 17(b) presents
three different domains, which are defined as follows: phase
decoherence in the blue area and phase synchronization in
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FIG. 18. Effect of internal dynamics (intraphase coupling K1 �=
K2) on the existence of explosive synchronization in the absence of
interlayer repulsive coupling σr [see Eq. (7)]. (a) Order parameter
of each layers R1 and R2; (b) mean velocity V1 and V2. The red is
for the second layer and the blue for the first layer and the results
are obtained for J1 = J2 = 0.1, K1 = −0.1, K2 = −1, rc = 3 corre-
sponding to the internal SpPW state in layer 1 and SA in layer 2. If we
switch the values of K1 and K2, then the behaviors of the layers will
simply switch also as seen in Fig. 12 in the supplemental material
[73].

the cyan space; meanwhile, H1 decreases suddenly in the
yellow region. Comparing both Figs. 12 and 17, we see
that the synchronization domain is larger in Fig. 17 than in
Fig. 12 due to the value of the repulsive coupling σr = 0
and σr = −0.1, respectively, with equal values for the other
parameters.

Let us recall that for K1 = K2 = −0.1, the coupled swar-
malators displayed an explosive phase synchronization (see
Figs. 14 and 15). Therefore, in what follows, the goal is to
look at how the intralayer coupling Km, with m = 1, 2 for the
first and second layers respectively, can change the dynamics
for rc = 3. The graphs on Fig. 18 give the behaviors of both
swarmalators for J1 = J2 = 0.1, K1 = −0.1, K2 = −1, and
rc = 3. It occurs that for these values, the first layer is achiev-
ing an explosive synchronization while the second is moving
progressively to the synchronization state [see the graphs in
Figs. 18(a) and 18(b)]. These figures switch colors when we
exchange K1 and K2.

V. STABILITY ANALYSIS OF THE COUPLED LAYERS

This section is devoted to analyzing the global stability of
the system constituted by two coupled networks of swarmala-
tors, as expressed through Eqs. (5), (6), and (7). The attractive
and repulsive couplings are supposed not null to figure out
a more general expression. Thus, for a considered layer m
and chosen nodes i and j and θ l

i − θm
i and θm

j − θm
i near

zero, regardless of the values of l and m taken between 1 or
2, meaning near synchronization, the expression of the time
derivative of θm

i is given as follows:

θ̇m
i = Km

N

N∑
j

εm
j∣∣rm
i j

∣∣ + σa

Nm
a

N∑
j

εlm
j

Dm
i j

+ σr

Nm
r

N∑
j

εlm
j

Dm
i j

, (34)

where the error between two random internal phases located at
layers l and m is defined as εlm

j = θ l
j − θm

i ; for the same layer
the error is defined as εm

j = θm
j − θm

i and the distance between
two elements from the same layer is given as rm

i j = X m
j − X m

i .
For clarity, θ1

i and θ2
i are chosen to investigate the conditions

that lead the entire system to stability. It follows that the error

between both layers is expressed as

ε21
i = θ2

i − θ1
i , (35)

and its time derivative is given by the following relation:

ε̇21
i = K

N

N∑
j

(
ε2

j∣∣r2
i j

∣∣ − ε1
j∣∣r1

i j

∣∣
)

+ σa

N2
a

N∑
j

ε12
j

D2
i j

− σa

N1
r

N∑
j

ε21
j

D1
i j

+ σr

N2
a

N∑
j

ε12
j

D2
i j

− σr

N1
r

N∑
j

ε21
j

D1
i j

. (36)

From the fact that ε2
j − ε1

j = ε21
j − ε21

i , Eq. (36) can be
rewritten as

ε̇21
i = K

N

N∑
j

[
ε21

j − ε21
i∣∣r2

i j

∣∣ + ε1
j

(
1∣∣r2
i j

∣∣ − 1∣∣r1
i j

∣∣
)]

+ σa

⎡
⎣ 1

N2
a

N∑
j

ε12
j

D2
i j

− 1

N1
a

N∑
j

ε21
j

D1
i j

⎤
⎦

+ σr

⎡
⎣ 1

N2
r

N∑
j

ε12
j

D2
i j

− 1

N1
r

N∑
j

ε21
j

D1
i j

⎤
⎦. (37)

From Eq. (37), a candidate Lyapunov function can be ex-
pressed as

Qi = 1
2

(
ε21

i

)2
(i = 1, . . . , N ), (38)

and its time derivative is given by the following expression:

Q̇i = K

N

N∑
j

[
ε21

j ε21
i − ε21

i ε21
i∣∣r2

i j

∣∣ + ε1
j ε

21
i

(
1∣∣r2
i j

∣∣ − 1∣∣r1
i j

∣∣
)]

+ σa

⎡
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a
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ε12
j ε21

i

D2
i j

− 1
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a

N∑
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j ε21

i

D1
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⎤
⎦

+ σr

⎡
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N2
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ε12
j ε21

i

D2
i j

− 1

N1
r

N∑
j

ε21
j ε21

i

D1
i j

⎤
⎦. (39)

From relation Eq. (39), it is clear that the first condition for
stability is to have ε1

j = 0; namely, in order to have complete
internal phase synchronization, each swarmalator should first
achieve intralayer synchronization. From the relations ε21

j =
−ε12

j and a.b � a2+b2

2 Eq. (39) becomes

Q̇i �
N∑
j

K

N

⎡
⎣(

ε21
j

)2 + (
ε21

i

)2

2
∣∣r2

i j

∣∣
⎤
⎦ − (

ε21
i

)2 K

N

1∣∣r2
i j
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+ σa
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J

⎡
⎣ 1
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(
ε12

j

)2 + (
ε21

i

)2

2D2
i j

+ 1
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(
ε21
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i

)2

2D1
i j
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+ | σr |
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ε12
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)2+(
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i

)2

2D1
i j

⎤
⎦

(40)
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FIG. 19. Global stability analysis. (a) Convergence of the mean
error; (b) stability condition. In (a), we have the mean error ‖ε21‖
(blue) and  (black) and in (b) η in (red) and QM in (blue). This
was plotted with J = 0.1, K1 = K2 = −0.1, σa = 0.9, σr = 0, and
rc = 2.5.
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(
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2D1

i j
+ |σr |

N2
r

1
2D2

i j
+ |σr |

N1
r

1
2D1

i j

⎤
⎦

+
N∑
j

⎡
⎢⎣K

N
(ε12

j )2
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⎤
⎥⎦. (41)

Maximizing the distance between entities inside each layer
and minimizing the distance between those in opposite layers,
there exist positive constants χmin, χmax, and D0 (with D0

being the smallest distance between swarmalators even if the
layers collapse, d0 = 0) such that

χmin � rm
i j � χmax and min(Dm

i j ) � D0

Q̇i �
(
ε21

i

)2
[
− K

χmax
+ K

2χmin
+ σa

2D0
C1 + |σr |

2D0
C2

]
+ Q

(
ε12

j

)
(42)

with

C1 =
(

N

N2
a

+ N

N1
a

)
and C2 =

(
N

N2
r

+ N

N1
r

)
(43)

Q
(
ε12

j

) =
N∑
j

(
ε12

j
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[ K
2Nχmin

+ σa
2D0N2

a
+ σa

2D0N1
a

+ |σr |
2D0N2

r
+ |σr |

2D0N1
r

]
. (44)

Let C0 = max(C1,C2); for K ( 2χmin−χmax

2χminχmax
) � C0χmax

D0

(σa + |σr |) Eq. (42) can be rewritten as

Q̇i � −η
(
ε21

i

)2 + QM , (45)

where η = K ( 2χmin−χmax

2χminχmax
) − C0

2D0
(σa + |σr |) and QM =

max(Q(ε12
j )). It follows that, if ‖ε21

i ‖ >
√

QM

η
, then Q̇i < 0.

Hence Q decreases with ‖ε21
i ‖ [see Eq. (38)]. Thus, from the

standard invariance arguments, it comes that the error satisfies
asymptotically the following bound, which is defined as∥∥ε21

i

∥∥ � , (46)

where  �
√

QM

η
. According to Kakmeni et al. [74], this

achieves the proof.
In order to verify the main condition [Eq. (46)] to achieve

asymptotic stability, Figs. 19(a) and 19(b) show the conver-
gence of the mean error ‖ε21‖, the constant variation η, and
QM described respectively in Eqs. (35), (44), and (45). For this

representation, we have considered the parameters of Fig. 17
where synchronization appears (see cyan domain): σr = 0,
σa = 0.9 and rc = 2.5. The main observation of these fig-
ures is the fact that stability between the two layers is obtained
when the condition of Eq. (46) is respected where η should
be positive [see Fig. 19(a)]. Also, the maximization of QM

comes with the minimization of the distances Dm
i j (m = 1, 2),

χmin and χmax to the smallest value of rm
i j that is reached at the

synchronization. This allows us to clearly show that the mean
error becomes bounded by  and converge to zero when the
stability is reached around t = 20.

VI. CONCLUSION

This work investigated the dynamics of coupled swarmala-
tors with attractive and repulsive coupling. The first type
applies to nodes within a domain defined by a vision range
rc, while the second applies to those outside the vision range.
A study of the system’s dynamics as a function of the vi-
sion range showed a richness of phase dynamics, such as
the formation of clusters, synchronization, and antiphase syn-
chronization. Increasing the vision range gave way to the
formation of static dynamics of the entities (SS, SA, and
SPW), while its decrease favored that of active dynamics
(SpPW and APW). A detailed study of the phases is presented
in Sec. IV A. In addition to these dynamics, the ISSPI state
was highlighted. The study of the stability of this state in
the sense of Lyapunov was done, which showed us that the
phase synchronization obtained is locally stable. This stability
study was extended to the two layers independently of their
internal dynamics. In contrast to the attractive coupling, the
influence of the repulsive coupling seems to delay the phase
synchronization between the entities. Analysis of the energy
of the phases showed a surprising richness of transitions, as a
function of σa and rc, until the systems reach complete internal
phase synchronization. We observe first- and second-order
transitions and the appearance of internal phases rotating
waves preceding explosive behavior and complete synchro-
nization.
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APPENDIX: GLOSSARY

AMPW: attractive mixed phase wave
APW: active phase wave
ISSPI: interlayer static sync π

RMPW: repulsive mixed phase wave
SA: static async
SCS: static cluster sync
SPI: static π

SpPW: splintered phase wave
SPW: static phase wave
SS: static sync
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