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ABSTRACT

Nowadays, experimental techniques allow scientists to have access to large amounts of data. In order to obtain reliable information from
the complex systems that produce these data, appropriate analysis tools are needed. The Kalman filter is a frequently used technique to infer,
assuming a model of the system, the parameters of the model from uncertain observations. A well-known implementation of the Kalman filter,
the unscented Kalman filter (UKF), was recently shown to be able to infer the connectivity of a set of coupled chaotic oscillators. In this work,
we test whether the UKF can also reconstruct the connectivity of small groups of coupled neurons when their links are either electrical or
chemical synapses. In particular, we consider Izhikevich neurons and aim to infer which neurons influence each other, considering simulated
spike trains as the experimental observations used by the UKF. First, we verify that the UKF can recover the parameters of a single neuron, even
when the parameters vary in time. Second, we analyze small neural ensembles and demonstrate that the UKF allows inferring the connectivity
between the neurons, even for heterogeneous, directed, and temporally evolving networks. Our results show that time-dependent parameter
and coupling estimation is possible in this nonlinearly coupled system.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0144499

The Kalman filter is a popular technique that can be employed to
infer the parameters of a model given uncertain observations, and
it has found applications in diverse fields. In the field of neuro-
science, it has been used, for example, to estimate the parameters
of neural models and for real-time decoding of brain signals for
brain–machine interfaces. However, the neural models that have
been considered contain a large number of parameters, which
makes a systematic exploration of the parameter space unfeasi-
ble. Here, we study a neural model, the Izhikevich model (IM),
which realistically reproduces many neural states, even though it
is computationally low-cost. Having a small number of parame-
ters and, at the same time, showing very rich dynamical regimes,
the Izhikevich model is an ideal candidate for a systematic explo-
ration of the parameter space and the study of neurons cou-
pled with different topologies. We analyze the suitability of the
Kalman filter to estimate the model’s parameters and we discuss
its main limitations.

I. INTRODUCTION

One of the main challenges that neuroscience has faced for a
long time is the determination of brain topology, which is morpho-
logically diverse and complex. In addition, the elements that form
the brain network, the neurons, are also diverse and complex. Neu-
rons show reproducible nonlinear responses to stochastic stimuli.1

Hence, they can be modeled as stochastic nonlinear dynamical
systems.2

Although much progress has been made on the relationship
between topology and dynamics in the brain, scientists are still far
from having a good understanding.3,4 Mathematical models of the
whole brain or just of a tiny fraction of billions of neurons, as well
as information-based data analysis techniques are powerful tools for
shedding light on the above relationship.5

However, a realistic estimation of the models’ states and param-
eters is a very difficult challenge, and different approaches based on
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control theory have been developed.6 A well-known method is the
Kalman filter.7–9

The Kalman filter allows inferring optimal parameters of a
model given uncertain observations, balancing the effects of mea-
surement noise, disturbances, and model uncertainties and has
found applications in many fields of science and technology.10

In neuroscience, the Kalman filter has been used, for example,
for decoding brain signals for brain-machine interfaces.11–13 It has
also been used to estimate the parameters of neural models.14–19

However, the models that have been considered, such as the Mor-
ris–Lecar or the Hodgkin–Huxley, contain a large number of param-
eters that make a systematic exploration of the parameter space
unfeasible. Here, we study the Izhikevich model20 because it repro-
duces many important properties of biological neurons and, at the
same time, has a small number of parameters and is computationally
low-cost.21 Therefore, the Izhikevich model is an ideal candidate for
a systematic exploration of the parameter space allowing a study of
small ensembles of coupled neurons.

We analyze under which conditions a nonlinear version of the
Kalman filter, the unscented Kalman filter (UKF),22,23 provides a
good estimation of the IM parameters and we discuss its main lim-
itations. We show that the UKF is able to recover the parameters of
an isolated neuron and the external current that is exciting its activ-
ity. We also show that the UKF is able to do so even in the case of
time-dependent input currents. Then, we study small networks with
different topologies, with both electrical and chemical couplings,
and show that UKF is able to recover the topology of the network
using observations of the dynamic variables, assuming the coupling
strength, electrical or chemical, and all the internal parameters are
known.

II. METHODS

A. Model

The Izhikevich model (IM) was introduced by Izhikevich20 as
an alternative to more realistic but computationally expensive neu-
ron models.24 Despite its simplicity, it can be used to model a broad
variety of neuron types21 and dynamical regimes. Here, we will focus
on single Izhikevich neurons in the chaotic regime—that is, neu-
rons for which the spiking dynamics is irregular, aperiodic—and
small networks of chaotic neurons linked by electrical or chemical
couplings.

The state of an Izhikevich neuron i is fully specified by two state
variables. xi represents the neuron membrane potential and yi repre-
sents the membrane recovery variable accounting for the activation
of the ionic currents.

Let [x1, y1, . . . , xi, yi, . . . ]T be the state vector of the neurons, the
equations governing the system are given by

ẋi = 0.04 x2
i + 5xi + 140 − yi + I + Ei + Ci + σZξ

x
i ,

ẏi = a (b xi − yi) + σZξ
y
i ,

(1)

with the after-spike reset condition,

if xi > 30, then

{

xi → c,

yi → yi + d.
(2)

a is a small parameter representing the slow time-scale of yi, b
is the coupling strength between the state variables, and the external
currents are modeled by I. All parameters here, including x, y, and
time, are dimensionless. The parameters a, b, c, and d can be fitted to
obtain a specific firing pattern of the neuron. The last term in Eq. (1)
represents random fluctuations and we refer to it as dynamic or pro-
cess noise. ξ x

i and ξ
y
i represent Gaussian white noises with zero mean

and unity variance. σZ is the noise strength and for simplicity, it is
the same for x and y. For a system of N neurons, the dynamical noise
can be thought as a random 2N-dimensional vector with zero mean
and covariance matrix Q̄Z = σ 2

ZI, where I is the identity matrix.
The electrical coupling between neurons is described by a

system of ordinary first-order differential equations with differ-
ent levels of detail that represent various degrees of physiological
descriptions.25 Here, we consider the simplest coupling, namely,
linear diffusive coupling, Ei is given by

Ei = ge

N
∑

j=1

Ae
ij(xj − xi), (3)

where ge is the coupling conductance and Ae
ij are the coefficients

of the adjacency matrix: Ae
ij = 1 whenever neuron i is connected to

neuron j, otherwise Ae
ij = 0.

The coupling Ci comprises inputs delivered through chemical
synapses to neuron i from all other neurons in the network. It is
given by26

Ci = gc(xi − µs)

N
∑

j=1

Ac
ijζ(xj). (4)

gc is the synaptic coupling strength, µs is the reversal potential, and
the sigmoid function ζ(x) is defined as

ζ(xj) = [1 + exp(−ε(xj − θ))]−1, (5)

where ε controls the slope of the sigmoidal function and θ is the
synaptic firing threshold. This function represents the activation of
the postsynaptic current when a presynaptic neuron sends an action
potential, that is, when x becomes larger than θ . Hence, a neuron i
receives a chemical synapse from a neuron j only if xj is larger than
θ . The value of the prefactor (xi − µs) in Eq. (4) controls whether
the synapses are inhibitory or excitatory. In particular, we chose

TABLE I. Dimensionless parameters20 used in the simulations of the IM.

a b c d I (Is) ge gc µs ε θ α ω σ Z σ ν

0.2 2 −56 −16 −99 (0, 0.1) (0, 0.05) 35 7 0 3 0.15 0.025 0.15
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TABLE II. Initial guesses of the parameters used by the UKF.

a b c d I (Is) ge gc α ω σ P

(0.01, 0.9) (0.01, 5) ( − 70, − 40) ( − 25, − 5) ( − 94, − 104) (0, 0.1) (0, 0.05) (1, 5) (0.1, 1) 0.01

µs such as (xi − µs) < 0, that is, inhibitory chemical synapses. The
numerical values of all parameters are given in Table I.27

Throughout this study, we use symmetric Ae matrices and
asymmetric Ac matrices, because the electrical coupling is symmet-
ric, but the chemical coupling is directional. Here, we only focus on
a proof-of-concept demonstration of the UKF’s ability to infer cou-
pling topology; in the future, we plan to study the more challenging
(and realistic) scenario of heterogeneous, excitatory, or inhibitory
chemical synapses.

B. The unscented Kalman filter

The Kalman filter makes a prediction for the future state of
a system, resulting from the state evolution of a dynamical model,
and then corrects it using the information coming from experimen-
tal data. Even though it was originally developed for linear systems,
soon it was extended to include nonlinearities. Different nonlinear
extensions were created. The UKF is one nonlinear version of the
filter that has a good performance in terms of computational effort.

Following the notation in Forero-Ortiz et al.,28 we consider the
extended state ū as the vector given by the state variables xi and
yi of the N neurons (i = 1, . . . , N) and all the parameters we want
to retrieve. Our process model to be employed in the UKF will
be ūk+1 = ā(ūk), where k is the timestep index. ā is given by the
deterministic part of Eq. (1) for the state variables and is the iden-
tity operator for the parameters, as we assume they are constant.
In the UKF algorithm, the estimation for ūk+1 predicted using the
stochastic dynamical model is corrected by an experimental piece of
data. However, these experimental data will necessarily have some
uncertainty resulting from the measurement process, represented
by a measurement function. Our measurement function is a selec-
tion of the state variables from the extended vector ūk, which are
perturbed by the measurement noise with standard deviation σν :
xi → xi + σν χ x

i and yi → yi + σν χ
y
i , where χ represents Gaussian

white noise. Thus, the covariance matrix of the measurement noise
will be Q̄ν = σ 2

ν I. The covariance of the estimated state is P = σPI,
which is evolved by the UKF algorithm from the initial values given
in Table II.

C. Implementation

To generate the synthetic data that we use as experimen-
tal observations, we numerically solve Eq. (1) with a fourth-order
Runge–Kutta method, an integration step of dt = 0.01, and the
parameters reported in Table I, keeping the measurements with
sampling rate equal to the integration step. With these parameters
single (uncoupled) neurons display chaotic dynamics,27 as depicted
in Fig. 1(a). Initial conditions for the simulations were drawn from a
normal distribution centered at a fixed point of Eq. (1) in the case of
no coupling, (−56.25, −112.5), with a standard deviation equal to 1.

Throughout the study, we employ the UKF implemented by the
Python package FilterPy.29 The confidence in the process model (Q̄Z)
and the measurements (Q̄ν) are kept constant (see Table I). An initial
transient of 50 000 timesteps was discarded in all runs.

The UKF requires an initial guess for the parameters that we
want to estimate. To test the robustness of the UKF, we consider dif-
ferent initial guesses for each run, which are selected from a uniform
distribution in the ranges given in Table II.

To quantify the performance of the UKF in recovering the adja-
cency matrix geA

KF = GKF
e , we use the Euclidean distance between

the original and the recovered matrix,

D(G, GKF) =

√

∑

i,j

(

Gi,j − GKF
i,j

)2
. (6)

We quantify the performance using the full coupling matrix G,
as we want to test not only if the UKF is able to reconstruct the
connectivity but also if it can devise the correct coupling strength
without being informed that the coupling strength is the same for
all links. Also, we chose to use the Euclidean distance because it is a
simple, straightforward measure to compare two graphs of weighted
links with a single figure.

FIG. 1. (a) Time evolution of the variables x(t) (upper curve) and y(t)
(lower curve) of an isolated Izhikevich neuron, simulated with Eq. (1) with
parameters given in Table I. (b) Response to an external modulated current
I(t) = Is + α sin(ωt). In each panel, the current input is represented by the
dashed line. The values of the parameters are given in Table I.
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III. RESULTS

A. Estimation of the parameters of a single neuron

First, we illustrate the effectiveness of the UKF in estimating
the parameters of a single Izhikevich neuron. The parameters that
we attempt to estimate are a, b, c, d, and I. Note that the parameters c
and d only appear in the resetting dynamics, therefore the UKF can
only update them in the event of a spike. Moreover, the equation for
ẏ contains a product ab, which can increase the uncertainty of the
estimation. For example, an underestimation of a can compensate
an overestimation of b. To avoid such problems, we estimated ab
and a independently.

To recover the unknown parameters, we consider 100 simu-
lated time series as input, each with a different initial parameter
guess drawn uniformly from the intervals reported in Table II. These
intervals have been chosen because in those ranges the spiking of the
neuron will be chaotic, which is a piece of information we can infer
from the spike sequence. Results are shown in Fig. 2. For all cases,
the real value of the parameter is within the range of the standard
deviation. As the estimation of c and d is only updated when the
neuron spikes, the duration of the simulated time series required to
obtain a reliable estimation is larger than for the other parameters.

We point out that using the UKF to estimate c and d is unnec-
essary because a direct estimation of these parameters can be done
easily by checking the values of x and y after a spike.

Now, we test the estimation of time-varying parameters.
Specifically, we consider a sinusoidal external current, I(t) = Is

+ 3α sin(ωt), and estimate a, b, and I(t) (wrongly assuming that the
current is constant). The effect of such a current on the neuron’s
dynamics is shown in Fig. 1(b), where we see that bursts of spikes
are followed by periods of subthreshold oscillations. Since at con-
stant I the Izhikevich model displays a great variety of dynamical
behaviors including bursting,20 the inspection of the time series does
not provide evidence of the presence of a sinusoidal input current.

The results of the parameter estimation are shown in Fig. 3.
The recovered values of a and b are comparable to those obtained in
the previous parameter estimation (see Fig. 2). The estimated value
of I oscillates with a frequency equal to ω, suggesting that I is not
constant.

Next, we substitute the expression of I(t) in the model, Eq. (1),
and separately estimate Is, α, and ω. In this case, we also need to
include time as an additional dimension of the extended vector
space, with dynamic equation ṫ = 1. The results of this approach are
shown in Fig. 4. The UKF can estimate the correct parameters of the
oscillation in the majority of cases. However, large departures from
the correct values can be observed, which could be due to the fact
that the model with constant I can produce similar output dynamics.

B. Estimation of network connectivity

We now consider small networks of Izhikevich neurons, and we
investigate the capacity to recover the adjacency matrix A assuming
that the coupling strengths, ge and gc, and all the internal parame-
ters are known. Of course, this is not possible in experiments, and
we use these assumptions as a first step for testing the neural net-
work reconstruction problem using the UKF approach: if, given
these assumptions, the network cannot be inferred, we can conclude

FIG. 2. Parameter estimation for a single neuron as a function of the simulation
time. The colored thick lines represent the median of the estimations computed
from 100 runs. The shaded regions represent the first and third quartiles. The
dashed lines mark the true values of the parameters. The inset in each subplot
shows the distribution of the final estimations. The orange line is the median, the
box marks the first and third quartiles, and the upper and lower whiskers of the
bars represent the maximum and minimum values. The parameter values are
given in Table I.

that the UKF approach is not useful; on the other hand, if we succeed
in reconstructing the network with these assumptions, as a next step
we will test the UKF approach having less information, for instance,
assuming a different neuron model, unknown internal parameters,
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FIG. 3. Parameter estimation for a single neuron with a time-dependent external
current, which is modeled as a constant input. The colored thick lines represent
the median of the estimations computed from 100 runs. The shaded regions rep-
resent the first and third quartiles. The dashed lines mark the true values of the
parameters. The inset in each subplot shows the distribution of the final estima-
tions. The orange line is themedian, the boxmarks the first and third quartiles, and
the upper and lower whiskers of the bars represent the maximum and minimum
values. The parameter values are given in Table I.

unknown coupling strengths. We run the UKF algorithm, consider-
ing each element of A as an additional dimension of the extended
vector ū.

We consider networks with N = 4 neurons, which can be seen
as building blocks of bigger networks. However, we must keep
in mind that complex systems usually display emergent collective
behavior when the number of elements is large enough, and there-
fore, while the UKF algorithm may succeed in reconstructing the
topology of a small network, the collective behavior that may emerge
for a large enough number of neurons (and/or the large number of
parameters to be inferred), will probably cause the UKF algorithm to
fail. Therefore, the study of the role of the network size is, of course,
important and additional work is planned, which will be reported
elsewhere.

The network topologies are shown in Appendix (see Figs. 8
and 9). The simulated time evolution of the membrane poten-
tials of all nodes for each network topology are also shown
in Figs. 8 and 9. The network dynamics differ in their level

FIG. 4. As Fig. 3, but explicitly modeling the input current as I = Is + α sin(ωt).
The colored thick lines represent the median of the estimations computed from
100 runs. The shaded regions represent the first and third quartiles. The dashed
lines mark the true values of the parameters. The inset in each subplot shows the
distribution of the final estimations. The orange line is the median, the box marks
the first and third quartiles and the upper and lower whiskers of the bars represent
the maximum and minimum values. The parameter values are given in Table I.

of synchronization. First, we consider electrical coupling only
(gc = 0), such that the adjacency matrix is symmetric and we only
need to determine its upper triangular elements Ge = geA

e with
ge = 0.05.
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FIG. 5. Evolution of the distance D, which represents the Euclidean distance
between real coupling matrix Ge and the estimated one GKF

e . N1, N2, N3, N4,
and N5 represent different topologies, as shown in Fig. 8. For all topologies D
decreases sharply at first, then it saturates below 10−2. The coupling strength is
ge = 0.05 and the dynamics displayed by the networks are shown in Fig. 8.

The results for the different topologies are displayed in Fig. 5,
where we see that the UKF gives an excellent estimation of Ge, as the
Euclidean distance D

(

Ge, G
KF
e

)

approaches 0.
To study the effect of chemical synaptic coupling in the UKF

estimation, we add direct links between some nodes in the for-
merly symmetric networks, as shown in Appendix (Fig. 8). We
estimate two adjacency matrices, one encoding electrical coupling,
geA

e = Ge with Ae = (Ae)T, and the other encoding chemical

FIG. 6. Evolution of the distanceD for (a) electrical coupling and (b) chemical cou-
pling, with coupling strengths ge = 0.1 and gc = 0.05. The distance between the
original and the estimated adjacencymatrices,D(G,GKF), decreases sharply with
simulation time, saturating below 10−2 for all network topologies. The dynamics
displayed by the networks are shown in Fig. 9.

FIG. 7. Evolution of the distance D between the adjacency matrix and the esti-
mated one in the case of time-dependent coupling. D is depicted as a function
of time, for different coupling strengths. The vertical dashed line represents the
instant in which the coupling is turned on and the horizontal one marks the zero.

coupling, gcA
c = Gc with Ac 6= (Ac)T. We chose ge = 0.1 and

gc = 0.05. Note that we increase ge compared to the previous case
to test the robustness of the UKF against synchronized states. Since
we use inhibitory synapses, the firing rate decreases slightly. In the
limit of total synchronization the input through electric coupling,
Ei goes to zero, while Ci is exactly the same for each element in the
network.

We see in Figs. 6(a) and 6(b) that even with two coupling
schemes, the chemical one being nonlinear, the UKF can estimate
the correct coupling matrices. All networks are heterogeneous in the

FIG. 8. The five network topologies used when considering only electrical cou-
pling [Eqs. (1) and (3)]. The links between nodes are represented by black lines.
For each case, we show the network’s dynamics with ge = 0.05. The insets show
the Kuramoto order parameter R and the synchronization error Err .
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FIG. 9. The five network topologies used when considering both electrical and
chemical coupling [Eqs. (1), (3), and (4)], the undirected links are electrical, and
the directed links are chemical. The left column displays the network’s dynamics
with ge = 0.10 and gc = 0.05. The insets show the Kuramoto order parameter R
and the synchronization error Err .

sense that the number of connections is not the same for the dif-
ferent neurons. As pointed out by Forero-Ortiz et al.,28 the UKF is
robust against synchronization, which is confirmed here.

Here, we presented reconstruction results in the case of
inhibitory synapses; however, we checked that the UKF provides
similar results also for excitatory synapses and a mix of excita-
tory and inhibitory synapses, provided it knows which synapses are
excitatory and which are inhibitory.

We highlight that for all cases the Euclidean distance D(G, GKF)

saturates below 10−2. Furthermore, to verify that all the links were
correctly estimated we classified the performance of the UKF using
the Receiver Operating Characteristic (ROC) curve.30 If the UKF
recovers the right connectivity, then the Area Under the ROC Curve
(AUC)30 will be 1. For all cases studied, we obtained an AUC > 0.99,
implying a perfect reconstruction of the underlying topologies, that
is, the UKF predicts a link between two neurons i and j only if
Aij = 1. We believe that the UKF is robust against noise as long
as noise can be seen as a small perturbation to the system and the
dynamics is not driven by it.

C. Estimation of network connectivity in temporal

networks

Finally, we consider temporal networks, in which Ge,ij = ge Aij

varies with time. This is the case in many applications of network
theory,31 and in neuroscience, it is especially important since it can
be linked to plasticity.32

We model time-varying networks by considering couplings
between neurons that switch on at a simulation time t = 200. More
precisely, three single neurons connect at t = 200 in a linear chain,
(1 ↔ 2 ↔ 3),

ge





0 0 0
0 0 0
0 0 0



 → ge





0 1 0
1 0 1
0 1 0



 . (7)

We assume that all the internal parameters are known and we only
estimate the network’s topology.

The results are presented in Fig. 7. Before the coupling is
switched on, the UKF has quickly inferred the absence of coupling
(as D → 0). After the coupling is switched on, D first increases
sharply and then decreases steadily for all values of ge. This means
that the UKF can detect the emergence of coupling and estimate
the Ge matrix correctly. However, the estimation after the change
in the network takes more time than the initial estimation of the
null adjacency matrix. This is because the covariance on the matrix
coefficients will decrease, meaning high confidence in the inferred
matrix before the coupling is switched. When the matrix is changed,
the filter has to adjust to the new state, but the low covariance will
make the convergence rate slow. Nevertheless, the filter is eventually
able to recover the right network structure. Different initial models
or state covariances are expected to impact the convergence time,
both before and after turning on the coupling. Higher covariances
will result in higher variability in the predictions. This variability is
more efficient in capturing changes in the parameters. On the con-
trary, when covariances are smaller, the predictions are less prone
to change and, thus, adapt to new values. The right choice of this
parameter will result in a responsive system with sufficiently stable
inferred parameters.

IV. DISCUSSION AND CONCLUSIONS

We studied the capability of the UKF for recovering the param-
eters of a single neuron and of small neural ensembles modeled with
the Izhikevich model. We simulated the equations governing the
system dynamics and used the simulated time series as experimental
observations to feed the UKF algorithm, with confidence regulated
by Q̄ν . The IM was the process model with confidence regulated by
Q̄Z.

When the parameters of an isolated neuron are constant in
time, the UKF is able to estimate all the parameters. Second, we
studied an isolated neuron with a sinusoidal input current, which
displayed bursting spike dynamics. Due to the rich variety of dynam-
ical behaviors of the IM, it is not trivial to identify the cause of the
bursting activity. Still, even when modeling the current as a constant,
the UKF retrieved the neuron parameters and the average value of
the current and suggested an oscillating current. When including the
oscillating current in the process model, the UKF was able to pro-
vide a reasonable estimate of the amplitude (α), the mean (I), and
the frequency of the oscillation (ω).

We have also estimated the connectivity of small networks of
Izhikevich neurons with known internal parameters. First, we ana-
lyzed the five possible network topologies for four neurons with
undirected electrical coupling. Then, we added directed chemical
connections to the same networks. The UKF was able to recover the
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connectivity for all the networks regardless of the synchronization
level.

Finally, we addressed the problem of temporal networks by
analyzing a network of three electrically coupled neurons, in which
the topology changed from no coupling to a chain topology. The
UKF was able to identify the change in the network and estimate the
connectivity correctly

The results presented here were obtained considering measure-
ments of both x and y. Beyond that, we conducted a preliminary
analysis of the applicability of the UKF when only measurements of
the x variable are available. Our results suggest that the UKF is still
able to recover the parameters of a single neuron and the network
connectivity. However, to obtain good estimates, the UKF hyper-
parameters had to be carefully tuned, in particular, the standard
deviation σν and the initial condition for σP.

As in experimental measurements, only short time series with
limited temporal resolution can be recorded, further work is needed
to clarify the impact of the duration of the time series and the sam-
pling time. While the results presented here were obtained using
each simulated data point (i.e., using the integration step as sam-
pling time), preliminary studies suggest that the UKF is robust to
downsampling up to 1:20, if the time series is long enough.

Future work should also address larger networks and differ-
ent types of neurons. In fact, as discussed before, complex systems
usually display emergent collective behavior when the number of
elements is large enough. Therefore, the UKF algorithm may suc-
ceed in reconstructing the topology of a small network, but will
probably fail for a large number of neurons, or when there is a
large number of unknown parameters. Therefore, further work is
planned to test the UKF algorithm when the networks are larger and
when the internal and coupling parameters are unknown. While we
expect that the UKF algorithm will fail to reconstruct the network,
it may yield some information that can be useful for inferring some
properties of the real network (e.g., the average degree, the degree
distribution, the modularity, etc.).

Finally, it will be interesting to check if the UKF can differenti-
ate between inhibitory and excitatory synapses.
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APPENDIX: TOPOLOGIES AND SYNCHRONIZATION

QUANTIFICATION

The network topologies considered when studying electrical
coupling between nodes are presented in Fig. 8. The black links
represent undirected connections between nodes, so the resulting
adjacency matrices are symmetric (A = AT). The simulated time
evolution of the membrane potentials of all nodes for each network
topology is also shown in Fig. 8 on the right side, together with two
synchronization measures, the Kuramoto order parameter33R and
the synchronization error Err.

To evaluate the Kuramoto order parameter, we assign a phase
φ for each neuron time series that grows linearly at each spike with
a gain of 2π as defined in Ivanchenko et al.34 The Kuramoto order
parameter is given by

R =

〈

|
∑N

j=1 eiφj(t)|
〉

t

N
, (A1)

where N is the number of oscillators considered in the measure and
the average is taken over time. For totally synchronized systems,
R = 1. For totally unsynchronized systems, R ≈ 0.

Likewise, the synchronization error gives us an idea of how syn-
chronized the system is, we apply it directly to the time series. First,
we calculate the average membrane potential x̄ of all oscillators in
the network. Then, we compute how much each oscillator deviates
from x̄. Thus, the synchronization error is computed as

Err =

〈

∑N
i=1 |xi(t) − x̄(t)|

N

〉

t

. (A2)

Hence, Err = 0 in the case of total synchronization, where xi = xj,
∀ (i, j) ∈ [1, N], while for unsynchronized systems, Err may assume
large values.

When both electrical and chemical coupling between nodes
are considered, we use the topologies presented in Fig. 9. The adja-
cency matrices are not symmetric (A 6= AT), and all the networks are
heterogeneous, meaning that the nodes have a different number of
connections. The simulated time evolution of the membrane poten-
tials of all nodes for each network topology is also shown in Fig. 9
on the right side.
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