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ABSTRACT

This paper presents the optimal control and synchronization problem of a multilevel network of Rössler chaotic oscillators. Using the
Hamilton–Jacobi–Bellman technique, the optimal control law with a three-state variable feedback is designed such that the trajectories of
all the Rössler oscillators in the network are optimally synchronized at each level. Furthermore, we provide numerical simulations to demon-
strate the effectiveness of the proposed approach for the cases of one and three networks. A perfect correlation between the MATLAB and
PSpice results was obtained, thus allowing the experimental validation of our designed controller and shows the effectiveness of the theoretical
results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088880

Synchronization of chaotic systems is a fundamental problem
of nonlinear science, which has attracted continuous interest
over several decades.1–4 Most studies conducted in complex sys-
tems and, particularly, in the control of network dynamics use
linear (usually diffusive) coupling models to investigate the net-
work dynamics.2,5–9 This method is limited because it takes a very
long time to achieve a stable synchronization regime. To solve
this problem, we propose in this work to build an optimal con-
troller in the case of a network of chaotic oscillators that will
not only reduce the transient phase to achieve the desired syn-
chronization state but it also reduces considerably the simulation
time. This investigation is implemented both in the numerical
study on MATLAB software and on the electronic circuits made
with the PSpice software, and the results are identical in the
case of one layer as well as the case of three layers studied in
this work.

I. INTRODUCTION

The history of the synchronization of dynamical systems goes
back to Christiaan Huygens in 1665,2 and in the past three decades,
it has become a subject of intensive research due to their various
domains of applications in fields, such as mathematics, physics,
biology, economics, technology, and engineering.1–3,10–12 This phe-
nomenon exists in the case of two coupled systems as well as a
network.2,5,13 In recent decades, several works based on the study of
synchronization in complex networks have focused on the problem
of orienting the network toward a collective state shared by all the
units, but for the most part considering the coupling coefficient as
the control parameter used to achieve this dynamic.6–8,13

After an initial period of characterization of the complex net-
works in terms of local and global statistical properties, attention
was turned to the dynamics of their interacting units. A widely
studied example of such behavior is synchronization of coupled

Chaos 32, 093133 (2022); doi: 10.1063/5.0088880 32, 093133-1

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0088880
https://doi.org/10.1063/5.0088880
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0088880
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0088880&domain=pdf&date_stamp=2022-09-26
http://orcid.org/0000-0001-7706-7674
http://orcid.org/0000-0002-8974-2988
http://orcid.org/0000-0002-2975-2420
http://orcid.org/0000-0001-9183-8287
http://orcid.org/0000-0003-2987-9322
http://orcid.org/0000-0003-4805-4668
mailto:thierrynjougouo@ymail.com
https://doi.org/10.1063/5.0088880


Chaos ARTICLE scitation.org/journal/cha

oscillators arranged into complex networks.13 Synchronization can
be found applications in communication systems, system’s security,
and secrecy or cryptography.14,15

The investigations on the behavior of the network cooperative
systems (or multi-agent systems) have received extensive attention,
mainly due to its widespread applications, such as mobile robots,
spacecraft, networked autonomous team, sensor networks, etc.16–18

In all these applications, whatever the field, the main idea is control.
Based on the literature of the control, a wide variety of approaches
have been developed to control the behavior of the systems in a
network. Several methods have been proposed to achieve chaos
synchronization, such as impulsive control, adaptive control, time-
delay feedback approach, active control, sliding mode, pinning con-
trol, compound synchronization, nonlinear control,19–26 etc. Most of
the above methods were used to synchronize two identical chaotic
systems using adaptive methods.

To control a system is to be able to perform the appropriate
modification on its inputs in order to place the outputs in a desired
state. Most studies conducted in complex systems and, particularly,
in the control of network dynamics use linear (usually diffusive)
coupling models to study network dynamics.2,5–9 This method is lim-
ited because it takes a very long time to achieve synchronization,
thus rendering simulations practically useless. To solve this prob-
lem, we propose to build an optimal controller in the case of a
network of chaotic oscillators that will not only reduce the transient
phase to achieve the desired behavior, but it also reduces consider-
ably the simulation time. It is important to mention that this work
completes the work of Rafikov and Balthazar27 who initially pre-
sented the synchronization of two Rössler chaotic systems based on
the Hamilton–Jacobi–Bellman (HJB) techniques.

The structure of the article is as follows: In Sec. II, the control
of the dynamics of one network (sometimes called a patch) of 50
Rössler chaotic oscillators based on the formulation of the problem
is introduced a theorem illustrating how to design the controllers
is proven also in this section. In Sec. III, the HJB technique pre-
sented in Sec. II is extended to three networks of 50 Rössler chaotic
oscillators. Then, in Sec. IV, we illustrate the implementation of the
technique using electronic circuits for a small number of oscillators.

II. SYNCHRONIZATION OF A NETWORK OF RÖSSLER
CHAOTIC OSCILLATORS

The purpose of this section is to introduce a development opti-
mal control law to resolve for the optimal synchronization of Rössler
chaotic oscillators. The optimal control law is obtained using the
Hamilton–Jacobi–Bellman (HJB) technique.27,28

A. Problem formulation

First, we present the model of a single network. Figure 1 shows
the topology of connections between the nodes of the network.

Let us consider the well-known Rössler system9,29 as the node
dynamics with the following mathematical description of Eq. (1):







ẋ1
i = −x2

i − x3
i ,

ẋ2
i = x1

i + ax2
i , i = 1, 2, . . . , N,

ẋ3
i = bx1

i + x3
i (x

1
i − c),

(1)

where a = 0.36, b = 0.4, and c = 4.5.

FIG. 1. Representation of the model of a single network.

The system has a zero bounded volume, globally attract-
ing set.30,31 Hence, for all time t > 0, the state trajectories Xi(t)
= (x1

i (t), x
2
i (t), x

3
i (t)) are globally bounded and continuously differ-

entiable with respect to time t. Therefore, N positive constants Li for
all the N nodes of the network exist such that

||Xi|| ≤ Li ≤ Lmax, i = 1, 2, . . . , N, (2)

where ||Xi|| is the norm of the system identified by the index i,
Li is the maximum constant for the node i, and Lmax < ∞ is the
maximum constant for all nodes in the network.

Our goal is to develop an optimal control ui(t) to guarantee the
complete synchronization of all systems in the network. We assume
that the controlled model is defined by Eq. (3):

Ẋi = f(Xi) + Bui, (3)

where f(Xi): <n → <n represents the self-dynamics of node i [see
Eq. (1)] of the network and B ∈ <n×m. Taking into account the
controller ui ∈ <m, the dynamics of the network becomes







ẋ1
i = −x2

i − x3
i + u1

i ,

ẋ2
i = x1

i + ax2
i + u2

i , i = 1, 2, . . . , N,

ẋ3
i = bx1

i + x3
i (x

1
i − c) + u3

i .

(4)

As mentioned previously, the goal is to design an appropriate opti-
mal controller uk

i (k = 1, 2, 3 and i = 1, 2, . . . , N) such that for any
initial condition, we have

lim
t→∞

‖eij‖ = lim
t→∞

‖Xi(t) − Xj(t)‖ = 0, (5)

where ‖.‖ represents the Euclidean norm and eij the error between
system i and system j defined by eij(t) = Xi(t) − Xj(t). Therefore,
the dynamical system error between node i and node j is calculated
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as follows:











ė1
ij = −e2

ij − e3
ij + u1

ij,

ė2
ij = e1

ij + ae2
ij + u2

ij,

ė3
ij = be1

ij + x1
j e

3
ij + x3

j e
1
ij + e1

ije
3
ij − ce3

ij + u3
ij.

(6)

Clearly, the optimal synchronization problem is now replaced
by the equivalent problem of optimally stabilizing the error system
[Eq. (6)] using a suitable choice of the controllers u1

ij, u2
ij, and u3

ij.

In order to generalize Rafikov and Balthazar’s work27 to apply for a
network, we prove that

Theorem 2.1. The controlled Rössler chaotic oscillators pre-
sented by Eq. (4) will asymptotically synchronize provided the optimal
controller u∗ found minimizes the performance functional defined by
Eq. (7),

J =

∫ ∞

0

�(ek
ij, U) dt =

∫ ∞

0

3
∑

k=1

N
∑

i,j=1,i 6=j

(

αk
ij

(

ek
ij

)2

+ ηk
ij

(

uk
ij

)2
)

dt.

(7)

Let uk
ij = −

λk
ij

ηk
ij

ek
ij be the feedback controllers that minimize the

above integral measure with λk
ij, ηk

ij, and αk
ij being the weight of

the links that satisfy the relationship αk
ij = −

λk
ij

ηk
ij

. The dynamical sys-

tem error [Eq. (6)] converge to equilibrium ek
ij = 0 (k = 1, 2, 3 and

i, j = 1, 2, . . . , N.).
Proof. Let us assume that the minimum of Eq. (7) is obtained

with U = U∗ = {u1∗
1 , u2∗

1 , u3∗
1 ; u1∗

2 , u2∗
2 , u3∗

2 ; · · · ; u1∗
N , u2∗

N , u3∗
N }. There-

fore, we have

V(ek
ij, U

∗, t) = minU

∫ ∞

0

�(ek
ij, U∗, t) dt. (8)

The function V may be treated as the Lyapunov function candidate.
Using the Hamilton–Jacobi–Bellman technique, we find the

optimal controller U such that the system [Eq. (6)] is stabilized to
equilibrium points and the integral [Eq. (7)] is minimum. Therefore,
we have

∂V

∂e1
ij

ė1
ij +

∂V

∂e2
ij

ė2
ij +

∂V

∂e3
ij

ė3
ij +

3
∑

k=1

(

αk
ij

(

ek
ij

)2

+ ηk
ij(u

∗k
ij )

2
)

= 0. (9)

Replacing Eq. (6) into Eq. (9), we find

∂V

∂e1
ij

(

−e2
ij − e3

ij + u∗1
ij

)

+
∂V

∂e2
ij

(

e1
ij + ae2

ij + u∗2
ij

)

+
∂V

∂e3
ij

(

be1
ij + x1

j e
3
ij + x3

j e
1
ij + e1

ije
3
ij − ce3

ij + u∗3
ij

)

+

3
∑

k=1

(

αk
ij

(

ek
ij

)2

+ ηk
ij(u

∗k
ij )2

)

= 0. (10)

The minimization of Eq. (10) with respect to U∗ gives the
following optimal controllers:

∂V

∂ek
ij

+ 2ηk
iju

∗k
ij = 0 =⇒ u∗k

ij = −
1

2ηk
ij

∂V

∂ek
ij

, (11)

with k = 1, 2, 3 and i, j = 1, 2, . . . , N.
Replacing Eq. (11) into Eq. (10), we obtain the following

equation:

∂V

∂e1
ij

(

−e2
ij − e3

ij

)

+
∂V

∂e2
ij

(

e1
ij + ae2

ij

)

+
∂V

∂e3
ij

(

be1
ij + x1

j e
3
ij + x3

j e
1
ij + e1

ije
3
ij − ce3

ij

)

+

3
∑

k=1

(

αk
ij

(

ek
ij

)2

−
1

2ηk
ij

∂V

∂ek
ij

)

= 0. (12)

Now, considering

V(ek
ij) =

3
∑

k=1

λk
ij

(

ek
ij

)2

. (13)

The Hamilton–Jacobi–Bellman relation described by Eq. (12) is sat-
isfied. Therefore, the optimal controllers can be derived as follows:

u∗k
ij = −

λk
ij

ηk
ij

ek
ij, k = 1, 2, 3; i, j = 1, 2, . . . , N, (14)

where the constants λ and η are positive. Differentiating the function
in Eq. (13) along the optimal trajectories, we have

V̇(ek
ij) = −2

3
∑

k=1

αk
ij

(

ek
ij

)2

≤ 0. (15)

Therefore, we can select V as a Lyapunov function. Accord-
ing to Refs. 22 and 32, this shows that the solutions of the system
[Eq. (6)] are asymptotically stable in the Lyapunov sense via optimal
control. �

B. Numerical simulation of the optimal
synchronization in a single network

In order to demonstrate the effectiveness and validity of the
proposed results in an optimal controller in the case of the net-
work (patch) described in Eq. (4), we present and discuss the
numerical results. We use MATLAB software with a fourth order
Runge–Kutta integration method for numerical resolution of the
non-linear differential equations.

We consider a network constituted by N = 50 Rössler chaotic
oscillators with the optimal controllers obtained in Theorem 2.1.
According to Ref. 33, the synchronization error of the whole net-
work can be calculated using the relation given by

e(t) =
1

N

N
∑

i,j=1

∥

∥

∥
xk

i (t) − xk
j (t)

∥

∥

∥
. (16)

In Fig. 2, we present the dynamics of the systems in the network
without control. In Fig. 2(a), we can observe the dynamics of each
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FIG. 2. Dynamics of the network without control: (a) Time series of the
50 oscillators showing the desynchronization of the oscillators of the patch.
(b) Synchronization error between the oscillators of the patch. This result clearly
shows that in the absence of the control, the systems of the network are in a state
of total decoherence as shown by the error in (b).

oscillator of the network, and we conclude that synchronization does
not exist here. This situation is confirmed in Fig. 2(b) by a non-zero
synchronization error in this network. According to the literature,
synchronization between chaotic oscillators is due to the presence of
the coupling or control between these systems. Therefore, the results
presented in Fig. 2 are normal because in the absence of any type of
interaction or control, the existence of synchronization is a random
fact.

Now, we proceed to demonstrate the effectiveness of the opti-
mal control obtained in Theorem 2.1. In Fig. 3(a), we show the time
series of synchronized elements for a network of Rössler chaotic
oscillators for the constant parameters in the optimal controller:
λi = 1 and ηi = 10 with i = 1, 2, . . . , N. This chaotic synchroniza-
tion is confirmed by the synchronization error plotted in Fig. 3(b).
Therefore, it comes that the sum system is asymptotically stable.

Based on these results, it appears that this controller designed
in Eq. (14) leads the systems of the network in a synchronous
state with finite time. Therefore, it is important to evaluate
the impact of these constant parameters appearing in opti-
mal controllers on the time of synchronization of the systems
of the network. Therefore, we present in Fig. 3(c) the syn-
chronization errors of the network for three pairs of constant
parameter values in the optimal controller where λi = 1 and
ηi = 100 correspond to e1 in red, λi = 1 and ηi = 10 correspond
to e2 in cyan, and λi = 2 and ηi = 10 correspond to e3 in black.
This figure leads us to conclude that when the constant parameter
increases, the time required to reach synchronization decreases.

III. DYNAMICS OF A MULTINETWORK WITH
INTRANETWORK OPTIMAL CONTROL AND DIFFUSIVE
COUPLING BETWEEN NETWORKS

In this section, we consider a model formed by three networks
(see Fig. 4). Each network is made up of homogeneous (identical)
systems but subject to different initial conditions. The main objec-
tive here is to show that the controller obtained previously remains
optimal for intra-layer synchronization and that the control of the

FIG. 3. Dynamics of the network with control: (a) Time series of the 50 oscillators
showing the synchronization of the oscillators of the network. (b) Synchroniza-
tion error between the oscillators of the network. (c) Error synchronization error
between the oscillators of the network for some value of the control parameters.

FIG. 4. Representation of the multi-network model.
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FIG. 5. Dynamics of each network with intra-network control: (a)–(c) Time series showing the synchronization of the oscillators of the first, second, and third network,
respectively, for ε1 = ε2 = ε3 = 0, λi = 1, and ηi = 10. (d)–(f) Synchronization errors between the oscillators of the first, second, and third network, respectively, for
ε1 = ε2 = ε3 = 0, λi = 1, and ηi = 10.

model toward a desired behavior comes down to the inter-layer
coupling chosen diffusive.

In this representation, the mathematical description of each
network is given as follows:

First network:







ẋ1
i = −x2

i − x3
i + χ 1

i + ε1

(

y1
i + z1

i − 2x1
i

)

,

ẋ2
i = x1

i + ax2
i + χ 2

i ,

ẋ3
i = bx1

i + x3
i (x

1
i − c) + χ 3

i .

(17)

Second network:







ẏ1
i = −y2

i − y3
i + v1

i + ε2

(

x1
i + z1

i − 2y1
i

)

,

ẏ2
i = y1

i + ay2
i + v2

i ,

ẏ3
i = by1

i + y3
i (y

1
i − c) + v3

i .

(18)

Third network:







ż1
i = −z2

i − z3
i + w1

i + ε3

(

x1
i + y1

i − 2z1
i

)

,

ż2
i = z1

i + az2
i + w2

i ,

ż3
i = bz1

i + z3
i (z

1
i − c) + w3

i ,

(19)

where a = 0.36, b = 0.4, and c = 4.5 are the system parameter and
i = 1, 2, . . . , N, where N is the number of elements in a single net-
work. The state vector Xi(x

1
i , x

2
i , x

3
i ), Yi(y

1
i , y

2
i , y

3
i ), and Zi(z

1
i , z

2
i , z

3
i )

represent the first, second, and third patch, respectively. χ , v, and
w are the intra-network optimal controllers of the first, second, and
third network, respectively.

It is important to mention that these controllers are obtained
without any inter-network connection. Therefore, based on Sec. II,
the objective in all networks is the same, and the objective function

FIG. 6. (a) Dynamics of the three networks for λ∗2
ij = 0.95, η∗2

ij = 10, ε1 = ε3 = 0.6 and varying the weight in the first and third network as well as ε2: the green zone

represents where we have synchronization of all the networks in the network; the red domain delimits where we have the synchronization between the first and third network
only; the black domain defines where we have synchronization in the first and third network, but in the second network, we have a disorder like a chimera state considering
the whole network; the blue domain is where the synchronization of all networks in the network is not possible. (b) Zoom of Fig. 6(a) for ε2 between 0.1 and 0.2.
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FIG. 7. Dynamics of the phases (expressed in degrees) and temporal dynamic of the whole network for λ∗2
ij = 0.95, η∗2

ij = 10, and ε1 = ε3 = 0.6. (a) and (b) One cluster

formation for ε2 = 0.4, λ∗1,3
ij = 3, and η

∗1,3
i = 10. (c) and (d) Synchronization between Patches 1 and 3 (two cluster formations) for ε2 = 0.125, λ∗1,3

ij = 1.9, and η
∗1,3
i = 10.

(e) and (f) Chimera like for ε2 = 0.11, λ∗1,3
ij = 1.9, and η

∗1,3
i = 10. (g) and (h) Three cluster formations for ε2 = 0.005, λ∗1,3

ij = 1, and η
∗1,3
i = 10.

for all these three networks is also the same. Following Theorem 2.1,
the optimal controllers in each network will be defined as follows:

First network:

χ∗k
ij = −

λk
ij

ηk
ij

ek
ij, k = 1, 2, 3; i, j = 1, 2, . . . , N, (20)

with ek
ij = xk

i − xk
j , k = 1, 2, 3; i, j = 1, 2, . . . , N.

Second network:

v∗k
ij = −

λk
ij

ηk
ij

ek
ij, k = 1, 2, 3; i, j = 1, 2, . . . , N, (21)

with ek
ij = yk

i − yk
j , k = 1, 2, 3; i, j = 1, 2, . . . , N.

Third network:

w∗k
ij = −

λk
ij

ηk
ij

ek
ij, k = 1, 2, 3; i, j = 1, 2, . . . , N, (22)

with ek
ij = zk

i − zk
j , k = 1, 2, 3; i, j = 1, 2, . . . , N.

Using the optimal controllers presented in Eqs. (20)–(22) and
without inter-network coupling (ε1 = ε2 = ε3 = 0), we show in
Fig. 5 the dynamics of each of the previously defined network.
Figures 5(a)–5(c) show the time series of the first, second, and third
network, respectively, and Figs. 5(d)–5(f) present the synchroniza-
tion error in a much smaller time interval for good appreciation.
These figures give a good indication of the validity of the proposed
control.

Turning on the interlayer coupling in a multi-network modi-
fies some parameters in the corresponding error. The calculations,
although simple, are cumbersome due to the indexes involved;
therefore, we test the performance of the proposed optimal con-
trol scheme through experimental simulations. We have left to the
Appendix to show that the stability of the synchronization of the
whole network depends on the intra-layer synchronization. This
demonstration shows that the synchronization of the whole network
is conditioned by the intra-layer synchronization. The simulations

show that under the proposed control method, synchronization is
achieved between all systems of all networks. We investigate simul-
taneously the impact of the coupling weight of the control and the
inter-network coupling, and we obtain three different dynamics for
the whole multilevel network, which we show in Fig. 6. These results
are obtained under the following considerations: the weight in the
second network is 0.095 (λ∗2

ij = 0.95 and η∗2
ij = 10) and the inter-

network coupling is ε1 = ε3 = 0.6 in the first and third network.
Thus, varying simultaneously the weights in the first and third net-
works as well as the internetwork coupling in the second network,
we obtain four domains: first domain (green), where complete syn-
chronization is achieved for all elements of the multilevel system
as can be noted in Figs. 7(a) and 7(b). In Fig. 7, we represent the
phase of the oscillators, calculated using the Hilbert transform and
expressed in degrees defined as in Refs. 34 and 35 as well as a

FIG. 8. (a) Dynamics of the three networks with N = 3 oscillators per network for
λ∗2
ij = 0.95, η∗2

ij = 10, ε1 = ε3 = 0.6 and varying the weight in the first and third

network as well as ε2: the green zone represents where we have synchronization
of all the networks in the network; the red domain delimits where we have the
synchronization between the first and third network only; the black domain defines
where we have synchronization in the first and third network, but in the second
network, we have a disorder like a chimera state considering the whole network;
the blue domain is where the synchronization of all networks in the network is not
possible. (b) Zoom of Fig. 6(a) for ε2 between 0.1 and 0.2.

Chaos 32, 093133 (2022); doi: 10.1063/5.0088880 32, 093133-6

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

three dimensional representation of the oscillator state to show the
dynamics of the single oscillators in each of the phases shown in
Fig. 6. In Figs. 7(a) and 7(b), the oscillators of these three networks
form a single cluster. The second domain (red) indicates the region
where the first and third networks synchronize. The particularity of
this domain lies in the formation of two clusters as presented by
Figs. 7(c) and 7(d), and all the three networks are internally com-
pletely synchronized. The black domain has practically the same
properties as the previous red domain except that the second net-
work shows a disordered state. This leaves the entire network to

behave like a chimera as in Figs. 7(e) and 7(f). The last domain (blue)
represents the parameter region when complete synchronization is
not possible, while each single network is completely synchronized
at different phase values, as shown in Figs. 7(g) and 7(h). The inves-
tigation of the stability of the synchronization in the whole network
shows that this synchronization of the whole network is possible
only if the systems synchronize first in the different layers as shown
in the Appendix.

These studies show that the network can exhibit several behav-
iors depending on the parameters chosen.

FIG. 9. Dynamics of the phases and temporal dynamic of the whole network for λ∗2
ij = 0.95, η∗2

ij = 10, and ε1 = ε3 = 0.6. (a) and (b) One cluster formation for ε2 = 0.4,

λ
∗1,3
ij = 3, and η

∗1,3
i = 10. (c) and (d) Synchronization between Patches 1 and 3 (two cluster formations) for ε2 = 0.115, λ∗1,3

ij = 2.6, and η
∗1,3
i = 10. (e) and (f) Chimera

like for ε2 = 0.146, λ∗1,3
ij = 1.5, and η

∗1,3
i = 10. (g) and (h) Three cluster formations for ε2 = 0.005, λ∗1,3

ij = 1, and η
∗1,3
i = 10.
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IV. CIRCUIT IMPLEMENTATION

In this section, we focus on implementing the networks as cir-
cuits, which can serve as a powerful tool to qualitatively describe
quickly and cheaply the features that we want to demonstrate and,
therefore, suggest devices for real experiments. For this implemen-
tation, we initially consider the case of one network with three
Rössler oscillators and the study will extend to the case of three

networks as in Sec. III. In order to better appreciate the experi-
mental results that will be given later, we have redone the studies

presented in Fig. 6 but now considering three oscillators per net-

work (i.e., nine oscillators for the whole network). The results of

this study are presented in Fig. 8, and like those of Fig. 6, they

show the dynamics of the whole network for N = 3 oscillators per

network.

FIG. 10. Electronic circuit of the jth Rössler chaotic oscillators of the network.
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FIG. 11. Electronic circuit modeling the controller between the jth and kth
oscillator analytically described by Eq. (14).

Figure 8 reproduces exactly the same dynamics as those
observed in Fig. 6 for the same range of variation of the weight
(which allows control of the intra-network dynamics) and the
inter-network coupling (which controls the inter-network dynam-
ics). The only difference is in the number of oscillators per
patch.

Based on Fig. 8, we illustrate in Fig. 9 different behaviors, such
as synchronization of these three networks [see Figs. 9(a) and 9(b)]
presenting one cluster formation for the whole network. We can
also have synchronization between the first and third network as it
appears in Figs. 9(c) and 9(d), where the whole network presents
two clusters. As illustrated in Figs. 7(e) and 7(f), the same result is
reproduced for the case of three systems per network [see Figs. 9(e)
and 9(f)]. In the same vein, we can mention the possibility of having
three clusters in the network, and it only takes to make the inter-
network coupling weak or null as recommended in Fig. 8 and where
the snapshot is given in Figs. 9(g) and 9(h).

FIG. 12. PSpice results of the time series of the oscillators in one network with the controller of Fig. 11 for (a) λi = 2 and ηi = 10 and (b) λi = 5 and ηi = 10.
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In Fig. 9, we represent the dynamics of the phases as well as the
temporal dynamics of the whole network. The results presented in
a way to be easily compared with Fig. 7 show that the experimental
results follow closely those predicted by theory.

The goal of the next step is to design a suitable PSpice cir-
cuit simulator to investigate the systems described by Eqs. (4), (17),
(18), and (19) with their controllers [Eqs. (14), (20), (21), and (22),
respectively] in order to validate and support our theoretical results.
However, the numerical solutions of the basic Rössler defined by
Eq. (1) without a coupling term cannot be implemented using gen-
eral circuit components due to the high amplitude of the signals that
can destroy these components. In practice, it often needs to be varied
to make proper adjustments to these variables.36 Thus, the ampli-
tude range of each variable value varies greatly. The working voltage
range of electronic components is generally between −15 V and
+15 V in practical electronic circuits. Therefore, implementing a
synchronization strategy implies taking into consideration the con-
straints by saturation coming from the electronic components of the
circuit.37 The reason for this could be the high amplitudes (at least
for a certain transient time) of the coupling functions that some-
times are really higher than the state variables of the systems.37,38

Therefore, to implement the electronic circuit of our systems, we
need to scale the variables of the systems. Thus, for the electrical

equations, we choose V
j
x1, V

j
x2, V

j
x3 (with j = 1, 2, . . . , N being the

index of the systems) as the state variables of the jth systems of the
network of Rössler oscillators.

In order to avoid a very cumbersome presentation due to
the amount of components of the circuit, we present in Fig. 10
only the circuit of one Rössler chaotic oscillator with Up = +15 V
and Un = −15 V being the polarization voltages of the operational
amplifiers used. In this circuit, U1jin, U2jin, and U3jin denote the
inputs of the first, second, and third variable of the jth oscillator
and U1jout, U2jout, and U3jout the outputs. Based on the previous
transformation and using Kirchoff and Millmann laws, we present
in Eq. (23) the circuit equations of the model presented previously in
Eq. (4). The electronic circuit of the controller designed by Eq. (14)
is given in Fig. 11 and their circuit equations by Eq. (24). For this
implementation, the number of oscillators per network is N = 3,



















V̇
j
x1 = 1

ξC1j

(

− 1
R2j

V
j
x2 − 1

R1j
V

j
x3

)

+ χ
jk
i ,

V̇
j
x2 = 1

ξC2j

(

R4j

R3jR5j
V

j
x1 +

R8j

R6jR7j
V

j
x2

)

+ χ
jk
i ,

V̇
j
x3 = 1

ξC3j

(

R4j

R3jR9j
V

j
x1 + V

j
x3

(

R4j

R3jR11j
V

j
x1 − 1

R10j

))

+ χ
jk
i ,

(23)

FIG. 13. Electronic circuit of three networks of Rössler chaotic oscillators with three oscillators per network.
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with

χ
jk
i =

1

ξRinCij

(

R15j

R12j

(

R12j + R13j

R14j + R15j

)

Uk
iout −

R13j

R12j

U
j
iin

)

, (24)

where Vx = ξX and ξ = 104. After some mathematical calcula-
tions, we arrive at the following choice of component values:
C1j = C2j = C3j = 10nF, R1j = R2j = R3j = R4j = 10 k�, R5j = R7j

= R8j = R11j = 10 k�, R6j = 27.8 k�, R9j = 25 k�, and R10j

= 2.22 k�. The values of the components used in Eq. (24) depend on
the weight used previously: λk

ij, η
k
ij, and αk

ij. The investigations of the

effect of the weight on the transition to synchronization (presented
in Fig. 3) are also checked using electronic circuits (see Fig. 10 for
the electronic circuit of the jth oscillator in one network and Fig. 11
for the electronic circuit modeling the controller between the jth and
kth oscillator). The simulation with the PSpice software of the whole
circuit in the case of one network leads us to the results presented in
Fig. 12 for two values of the weight. This result is captured directly
from the graphical interface of the software PSpice for authentic-
ity. In Fig. 12(a) where λi = 2 and ηi = 10, the computation of the
values of the components of Fig. 11 leads to the following values:
R12j = 50 k�, R13j = 10 k�, R14j = 50 k�, R15j = 10 k�, and

Rjin = 10 k�. In Fig. 12(b), we have R12j = 20 k�, R13j = 10 k�,
R14j = 20 k�, R15j = 10 k�, and Rjin = 10 k� for λi = 5 and
ηi = 10. This result shows not only the synchronization of the three
circuits used in this network but also we can observe that when we
increase the value of the weight, the transient time to obtain syn-
chronization is reduced. Therefore, it confirms the effectiveness of
the proposed control and the previous result [Fig. 3(c)] obtained in
MATLAB.

For the case of three networks as presented in Fig. 4, we have
decided to simplify the equations and have considered the general
form given by

Ẋ
j
i = f(X

j
i) + χ

jk
i + ε(X

j−1
i + X

j+1
i − 2X

j
i), i = j = 1, 2, 3, (25)

where χ and ε are, respectively, the optimal controllers obtained
in each network and the coupling strength between the networks.
Therefore, the electrical equations of each network can be expressed
as follows:

V̇
j
i = f(V

j
i) + χ

jk
i + ε(V

j−1
i + V

j+1
i − 2V

j
i), i, j = 1, 2, 3. (26)

FIG. 14. PSpice results of the time series of the oscillators in the case of three networks: (a) time series of the first oscillators in each network and (b) time series of all the
oscillators in each network for λi = 5, ηi = 10, and ε = 0.5 (i = 1, 2, 3).
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FIG. 15. PSpice results of the dynamics of the phases and temporal dynamics of the whole network corresponding to the parameter value of Fig. 9.

Equation (26) is obtained according to the elements (compo-
nents) of Fig. 13 while respecting the values of the parameters given
previously.

Figure 13 shows the circuit of the whole network of nine
Rössler chaotic oscillators. This global network as mentioned above
is formed by three oscillators per sub-network. Thus, in this figure,
the boxes marked Network1, Network2, and Network3 represent,
respectively, the first, second, and third network where the control
laws and the systems are those given in Figs. 10 and 11. The diffusive
couplings between the patches are represented in Fig. 13. The termi-
nals UiXj, UiYj, and UiZj represent the inputs of the three systems
in each patch (network) and the terminals UoXj, UoXj and UoXj the
corresponding outputs in each patch. The values of the resistances
marked in this Fig. 13 correspond to ε = 0.5 used previously in
MATLAB simulation. After simulation in PSpice, we show in Fig. 14
the time series of the whole network constituted by 3N oscillators.
In Fig. 14(a), we present the time series of the first oscillator of each
network for λi = 5, ηi = 10, and ε = 0.5. In Fig. 14(b), we show the
time series of the nine oscillators of the whole network. Based on
these results, we can confirm the effectiveness of our control in the
case of three networks.

To further investigate and validate the experimental results,
studies have been made using the circuit shown in Fig. 13. The
results of these studies, which are presented in Fig. 15, allowed us

to show the existence of the phenomena observed theoretically in
MATLAB. Among these phenomena, we have the synchronization
of the three networks [see Figs. 15(a) and 15(b)], the synchroniza-
tion between Networks 1 and 3 [see Figs. 15(c) and 15(d)] and the
formation of three clusters [Figs. 15(e) and 15(f)].

V. CONCLUSION

This paper presents a theoretical and experimental study (study
performed under MATLAB and PSpice) in achieving optimal syn-
chronization for a multi-level network of Rössler chaotic oscillators.
An optimal controller was designed in this study first for the syn-
chronization of a network (or a network) of 50 Rössler chaotic
oscillators and second for the synchronization of three networks of
50 Rössler chaotic oscillators. The designed optimal control law sat-
isfied Lyapunov’s stability theorem and the HJB technique. It also
shows under simulation that the control method we developed can
guarantee a chaotic state for all the oscillators of the network at syn-
chronization. Using this control method, it also demonstrates the
possibility to obtain complete synchronization for the three net-
works, cluster formation, or a semblance of chimera state for the
global network. Electronic circuits also show the effectiveness of the
proposed method.
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APPENDIX: STABILITY OF THE ALL NETWORK
SYNCHRONIZATION

Let us consider the simultaneous synchronization error, from
all the nodes in the multilevel network consisting of the coupled
three layers, expressed as ξ k

i = xk
i + yk

i − 2zk
i , and the intra-layer

couplings described by the following expressions:



















χ k
i =

∑N
j=1 θij

(

xk
i − xk

j

)

,

νk
i =

∑N
j=1 θij

(

yk
i − yk

j

)

,

ωk
i =

∑N
j=1 θij

(

zk
i − zk

j

)

,

(A1)

with θ k
ij =

λk
ij

ηk
ij

, k = 1, 2, 3; i, j = 1, 2, . . . , N.

For simplicity, we chose εk = ε for k = 1, 2, 3, and we consider
that θij are identical. Thus, the coupling between layers becomes

P = ε
[

y1
i + z1

i − 2x1
i + x1

i + z1
i − 2y1

i − 2
(

x1
i + y1

i − 2z1
i

)]

= −3εξ 1
i and the intralayer coupling becomes:

Ik
i = χ k

i + νk
i − 2ωk

i , (A2)

Ik
i = −

N
∑

j=1

θ k
ij

(

ξ k
i − ξ k

j

)

. (A3)

Considering the previous relations, we obtain the following error
system:



















ξ 1
i = −ξ 2

i − ξ 3
i −

∑N
j=1 θ 1

ij

(

ξ 1
i − ξ 1

j

)

− 3εξ 1
i ,

ξ 2
i = ξ 1

i + aξ 2
i −

∑N
j=1 θ 2

ij

(

ξ 2
i − ξ 2

j

)

,

ξ 1
i = bξ 1

i − cξ 3
i −

∑N
j=1 θ 3

ij

(

ξ 3
i − ξ 3

j

)

+ G,

(A4)

where G = x3
i x

1
i + y3

i y
1
i − 2z3

i z
1
i .

The problem now is to prove the stability of the entire con-
nected layers basing ourselves on the error system [Eq. (A4)]. To do

so, let us select the following Lyapunov function as given by Eq. (A5):

vi =
1

2

(

(

ξ 1
i

)2
+
(

ξ 2
i

)2
+

1

b

(

ξ 3
i

)2

)

. (A5)

Its time derivative is expressed by the following equation (A6):

v̇i = −

N
∑

j

θij

(

(

ξ 1
i − ξ 1

j

)

ξ 1
i +

(

ξ 2
i − ξ 2

j

)

ξ 2
i +

1

b

(

ξ 3
i − ξ 3

j

)

ξ 3
i

)

− 3ε
(

ξ 1
i

)2
+ a

(

ξ 2
i

)2
−

c

b

(

ξ 3
i

)2
+

G

b
ξ 3

i . (A6)

Considering that
∣

∣

G
b

∣

∣ ≤ L
∣

∣ξ 1
i

∣

∣, then L
∣

∣ξ 1
i

∣

∣

∣

∣ξ 3
i

∣

∣ ≤ L
2

(

(

ξ 1
i

)2

+
(

ξ 3
i

)2
)

.

Thus, relation [Eq. (A6)] becomes

v̇i ≤ −

N
∑

j

θij

(

(

ξ 1
i − ξ 1

j

)

ξ 1
i +

(

ξ 2
i − ξ 2

j

)

ξ 2
i +

1

b

(

ξ 3
i − ξ 3

j

)

ξ 3
i

)

− 3ε
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ξ 1
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ξ 2
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ξ 3
i
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ξ 1
i
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(

ξ 3
i

)2
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(A7)

v̇i ≤ −

N
∑

j

θij

(

(

ξ 1
i − ξ 1

j

)

ξ 1
i +
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ξ 2
i − ξ 2

j

)

ξ 2
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1
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ξ 3
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−
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(
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(A8)

v̇i ≤ −

N
∑

j

θij

(

(

ξ 1
i − ξ 1

j

)

ξ 1
i +

(

ξ 2
i − ξ 2

j

)

ξ 2
i +

1

b

(

ξ 3
i − ξ 3

j

)

ξ 3
i

)

− ξT
i Qξi, (A9)

where

Q =





(

3ε − L
2

)

0 0
0 −a 0
0 0

(

c
b

− L
2

)



 , (A10)

v̇i ≤ −

N
∑

j

θij

(

(

ξ 1
i − ξ 1

j

)

ξ 1
i +

(

ξ 2
i − ξ 2

j

)

ξ 2
i +

1

b

(

ξ 3
i − ξ 3

j

)

ξ 3
i

)

− λmin (Q) ‖ξi‖
2. (A11)

From here, it comes out that the time derivative of the Lyapunov
function in Eq. (A11) is negative if the nodes in each layer synchro-
nize, namely, if for all i and j ξ k

i − ξ k
j = 0. Thus,

v̇i ≤ w (t) , (A12)

w (t) = −λmin (Q) ‖ξi (t)‖
2. (A13)

Integrating the preview equation from zero to t yields

w (0) ≥

t
∫

0

w (s) ds. (A14)
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As t goes to infinity, the above integral is always less than or equal to

w(0). Since w(0) is positive and finite, lim
t→∞

∫ t

0
w (τ ) dτ exists and is

finite. Thus, according to the Barbalat lemma,39 one obtains

lim
t→∞

w (t) = λmin (Q) lim
t→∞

‖ξ (t)‖2 = 0, (A15)

which implies that lim
t→∞

ξi (t) = 0. This achieves the proof.
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