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Abstract This work presents a network of mobile systems whose nodes are constituted by a moving agent
with an internal state (an oscillator), which influences each other. The coupling topology of the agents
and internal oscillators changes over time according to the interaction range (also called vision range or
vision sizes (Majhi et al. Phys Rev E 99: 012308, 2019)) of their corresponding counterparts. The goal is to
investigate the dynamics of the oscillators and the agents in the considered systems. Our results show that
the synchronization between agents and that between oscillators depends on the coupling parameter of the
oscillators, the velocity of the agents and the interaction range of both agents and oscillators. We have found
that the vision range of the oscillators has a great influence on the dynamics of the agents. Among this
dynamics, we can mention phase synchronization and clusters formation in the mobile system and complete
synchronization as well as clusters formation on the oscillators. The stability of the synchronization in the
oscillators is investigated using the Master Stability Function (MSF) developed by Pecora and Carroll
(Phys Rev Lett 80: 2109, 1998).

1 Introduction

Mathematical modeling, theory of dynamical systems
and numerical simulations are the main tools used to
analyze the complex behavior of dynamical systems,
and the interest in networks systems is focused on the
research on complex systems. According to Edward O.
Wilson, “the greatest challenge today, not only in cell
biology and ecology, but in all science, is the accurate
and complete description of complex systems” [1]. It is
well known that different dynamical systems synchro-
nize due to their mutual interaction when the trajecto-
ries of their elements approach each other. The fact that
it is possible to induce a synchronized state between
deterministic chaotic oscillators makes the synchroniza-
tion a phenomenon of significant interest in many fields
of science and technology such as communications, elec-
tronics, optics, chemistry, biology and so on [2–6].

Several works exist on the emergence of the phe-
nomenon of synchronization in networks of complex

a e-mail: melinguefouevenceslas@yahoo.com
b e-mail: thierrynjougouo@ymail.com
c e-mail: louodop@yahoo.fr
d e-mail: hbfotsin@yahoo.fr
e e-mail: hilda.cerdeira@unesp.br (corresponding author)

systems, but most of these works are based on inter-
action networks with a stationary topology. In recent
years, the analysis of complex networks in evolution,
(those whose topology changes over time) has attracted
attention [7–9]. In many cases, they are networks in
which nodes (agents) can move and interact with the
neighboring nodes. In these networks, the coupling is
established according to the proximity of the agents.
In the literature, they are called moving neighborhood
networks [9,10]. In some fields the interaction varies
with time, among these fields we can mention commu-
nications [11], social networks [12], the spread of epi-
demics [13]. The study of the evolutive networks has
not yet been well explored, although it may be quite
relevant for several applications, such as coordination
of the movements of robots, vehicles, animals and even
people [14,15]. The mobility that characterizes these
types of networks can be of the utmost importance in
understanding the phenomenon of synchronization.

The effectiveness of a particular synchronization
approach is generally evaluated in terms of its abil-
ity to achieve the established objective of proximity
between the involved systems. Initial work on mobile
systems reveals that the synchronization phenomenon
in these systems is influenced by several parameters
[9,16–18]. For example, for a set of mobile agents in
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a two dimensional space, it is known that the density
(number of individuals per unit area) of the mobile
agents is a key parameter on which the phenomenon
of synchronization strongly depends. This knowledge
actually establishes a relationship between the behav-
ior of the system and the properties of the dynami-
cal network [16]. The time scales between synchroniza-
tion of local clusters and topological changes due to
movement of the agents have a significant influence
on the global behavior of the systems (See reference
[9]). Indeed, Fujiwara et al. [9] show that, when the
change in the time scale related to topology is higher
than that related to local synchronization in clusters,
it takes more time for the system to achieve synchro-
nization than in the fast-switching approximation pre-
diction. More recent studies on the emergence of syn-
chronization in mobile systems [16,19] use the chaotic
dynamics of the Rössler system to mold the nodes of
the network. These nodes move by performing a ran-
dom walk in a two dimensional space and their move-
ment is regulated after each iteration. Majhi et al.
show that the mobility parameters induce synchroniza-
tion in the network system and these parameters are
mainly the vision range of the mobile agents and their
speed.

According to these works on mobile systems, it is
clear that the emphasis is on the impact of agent mobil-
ity on oscillators’ dynamics. It is now important to
know how the internal dynamics can influence the posi-
tions of the agents in the space. In this work, we pro-
pose a mobile system in which positions and oscilla-
tors influence each other. In this system, the interaction
structure at the level of the agents varies according to
the parameter D0 which defines the vision range of the
oscillators and in turn the oscillators are influenced by
the vision range of the agents, d0.

The work is organized as follows: in Sect. 2 we present
the model of our study. It is constituted of a system of
mobile agents and an associated system of oscillators.
Section 3 presents the numerical results obtained from
the model defined in Sect. 2. In this section we study the
synchronization of the whole network: first the effects of
the space parameters (mobile systems), then the influ-
ence of the parameters of the oscillators and the mutual
influence of these parameters on the whole network. We
end our work with a conclusion in Sect. 4.

2 Model

Here we present a mobile system where the elements
are represented by N nodes with two parts, agents
and oscillators. Agents move in space following the
description in Eq. 1, while at the same time they have
an internal dynamics. This internal dynamics will be
represented by that of an oscillator (in this case a
Rössler oscillator, see Eq. 5), and we refer to them as
oscillators. Thereby, the numbers of agents and oscil-
lators are identical. Usually, the model used to describe
the dynamics of the agents in a finite two dimensional
space is given by [9,19]:

{
ηi (t + Δt) = ηi (t) + ui cos (θi (t))

ξi (t + Δt) = ξi (t) + ui sin (θi (t))
(1)

Where ηi (t) and ξi (t) with (i = 1, 2, ..., N) are the
position coordinates of the agents, N is the number of
agents. Each agent moves with the speed ui (with the
modulus u) which is generally the same for all agents
and the direction of each agent is determined by the
value of the angle θi (t) in a 2D space (size P × P )
with periodic boundary conditions, and P is the side of
the square lattice. The movement of the agents is ran-
dom, in the finite two dimensional space defined pre-
viously. The angles θi (t) are generated randomly and
updated after each step Δt. In previous works the cou-
pling between oscillators is determined by the proxim-
ity of the agents in space [9,19]. The neighbors which
participate in the interaction are determined by the
interaction range of the oscillators, as defined below. In
the present manuscript, we propose a model in which
the oscillators can influence the interaction between
the agents and vice versa. It is important to notice
that there is no direct interaction between agents and
oscillators, Each element will only interact at a cer-
tain range with other elements of the same kind, that
is agent i will interact with agent j provided oscillator
i interacts with oscillator j, and vice versa, as will be
defined below. This type of coupling is generally used in
the swarmalator systems, where each oscillator has an
internal oscillatory phase. An oscillator’s movement and
change of internal phase both depend on the positions
and internal phases of all other oscillators. Because of
this entanglement of spatial forces and phase coupling
the oscillators are called swarmalators [6,20,21]. Such a
coupling has already been used to couple the dynamics
of oscillators in fast communications [9].

We define the dynamics of the agents in the network
as follows:
⎧⎪⎪⎨
⎪⎪⎩

ηi (t + Δt) = ηi (t) −ui

N∑
j

Gij (t) cos (θi (t) − θj (t))

ξi (t + Δt) = ξi (t) − ui

N∑
j

Gij (t) sin (θi (t) − θj (t))

(2)

Gij (t) =
{

1 if Dij (t) ≤ D0

0 otherwise
(3)

Dij measures the distance between states of the oscil-
lators i and j and it is defined below (Eq. 4).

As defined previously, the couple (ηi, ξi) is the posi-
tion coordinates of the ith agents. Updating this posi-
tion coordinates after each iteration, a new direction
is imposed on each agent by randomly choosing a
new value of θi (t) between

[
0, π

2 , π, 3π
2

]
. Gij (t) is the

agents’ connectivity matrix corresponding to the ele-
ments i and j. D0 determines the maximum distance
defined in the 3N dimensional space of the oscillators’
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variables, that separates two oscillators which are inter-
acting. It delimits the interaction range of a considered
oscillator. Dij measures the distance between states of
the oscillators i and j and it is expressed as:

Dij (t) =
√

(xij (t))2 + (yij (t))2 + (zij (t))2 (4)

with xij = (xi (t) − xj (t)), yij = (yi (t) − yj (t)) and
zij = (zi (t) − zj (t)). The (xi (t) , yi (t) , zi (t))i=1, 2, ..., N

are the state variables of the oscillators. In this
manuscript, we are dealing with the Rössler system
used in ref [19], defined by:

⎧⎪⎪⎨
⎪⎪⎩

ẋi = −yi − zi

ẏi = xi + ayi − k
N∑
j

gij (t) (yi − yj)

żi = b + (xi − c) zi

(5)

with a = 0.2, b = 0.2 and c = 5.7

gij (t) =
{

1 if dij (t) ≤ d0
0 otherwise

(6)

gij (t) is the element connectivity matrix between the
oscillators i and j. d0 is the maximum radius of the
vision range of the agents in the space (η, ξ), which we
call agents vision range control. dij (t) is the distance
between the agents i and j in this space. The expression
for dij (t) is given by:

dij (t) =
√

(ηi (t) − ηj (t))2 + (ξi (t) − ξj (t))2 (7)

k is the coupling coefficient between the oscillators.

3 Numerical results

We consider a a network of 100 elements (each ele-
ment is constituted of one agent and one oscillator).
The surface or the space where the agents can move is
defined by P ×P with P = 200. The initial conditions of
the state variables of the oscillators (xi, yi, zi) are uni-
formly distributed in the range ([0.1 , 1.0], [0.0 , 1.0],
[0.5 , 1.0]). The initial conditions of the positions of the
agents (ηi, ξi) are also randomly and uniformly gener-
ated in the range ([0.0 , 15.0], [0 , 10.0]).

3.1 Space parameters’ influence on the network’s
dynamics

The goal of this subsection is to investigate the space
parameters’ impact on the whole network: we study
the influence on the dynamics of the network when
we vary the parameter that controls the vision range
of the agents and their speeds. Using some statisti-
cal methods such as the order parameter [27] (devel-
oped in Appendix 1) to characterize the phase synchro-

Fig. 1 Order parameter for the system of oscillators (red)
and mobile agents (blue) as a function of: a d0 for the values
u = 0.5, k = 1.0, D0 = 2 and b the speed u for the values
d0 = 2.5, k = 1.5, D0 = 2. c Largest Lyapunov exponent as
function of d0 with the same parameters’ values as in a and
d LLE as a function of u with d0 = 2.5, k = 1.5, D0 = 2

nization, we present in Fig. 1a the evolution towards
phase synchronization of the network as a function of
d0, the parameter that controls the vision range of the
agents. This figure shows in red the order parameter
of the oscillators r and in blue the order parameter of
the agents rp. These results show the transition toward
synchronization in the oscillators as well as the agents
for the system parameters u = 0.5, k = 1.0, D0 = 2.
For these parameters, we observe that d0 has a great
impact on the dynamics of the whole network. This
parameter leads the agents and the oscillators toward
a synchronization state. Figure 1b represents the same
order parameter as a function of the speed u for the
system parameters d0 = 3, k = 1.5, D0 = 1. For these
values, we observe an abrupt transition towards syn-
chronization in the oscillators and in the agents. This
transition is similar to an explosive synchronization in
both oscillators and agents. It should be noted that
the dynamics of the agents can only have phase syn-
chronization (since two individuals cannot occupy the
same position at the same time in a space.) In real sys-
tems such as cars, drones, robots. etc., complete syn-
chronization is a state to be avoided as it may lead to
disasters. Using the Master Stability Function devel-
oped by Pecora and Carroll [24] and explained in the
Appendix 1 for our model, we show in Fig. 1c, d the
Largest Lyapunov Exponent (LLE) of the oscillators as
a function of d0 and u respectively. For both cases, the
control parameter shows that d0 and u lead the net-
work to a synchronous state and we obtain a class II
Master stability function and the network always syn-
chronizes for a large enough coupling strength, as shown
by Boccaletti et al. [25], which in our case happens for
the critical value of the control parameters (d0c = 2.5
and uc = 0.23 ). After this critical value in each case,
the Largest Lyapunov Exponent (LLE) becomes neg-
ative and then, all oscillators in the network synchro-
nize.
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Fig. 2 Dynamics of the whole network as function of d0

and u. Order parameter of: a the oscillators and b agents. c
and d Dynamics of the number of states in the oscillators’
and the agents’ systems respectively for k = 0.5 and D0 = 2

To appreciate the impact of the speed and the vision
range control of the agents on the dynamics of the
whole network, we evaluate the order parameter [27]
of all agents and oscillators to characterize the phase
synchronization of the coupled systems. Based on this
method and these parameters, we present in Fig. 2a, b
the order parameter of the oscillators and the agents
respectively as a function of u and d0. For k = 0.5 and
D0 = 2, theses figures show two different dynamics:
red color characterizes complete phase synchronization
in the oscillators and agents. On the other hand, the
blue color shows where the synchronization does not
exist. It should be noted that, these regions where the
synchronization does not exist can posses other inter-
esting dynamics such as clusters formation character-
ized here by the number of states. This number of dif-
ferent states defines the number of clusters existing in
a considered network for a chosen set of parameters.
Therefore, Fig. 2c, d show the evolution of the number
of states or the number of clusters in the oscillators
and agents respectively. We can identify in this figure
five domains defined by five colors: blue) parameters’
region where the number of states is higher than or
equal to five; red) domain where the number of states
(clusters) is equal to four (n = 4) in both oscillators
and agents; green) region with three (n = 3) clus-
ters; yellow) region with two (n = 2) clusters; pink)
region where we have one (n = 1) cluster. The result
for n = 1 is confirmed by the order parameter shown
in Fig. 2a, b. According to these results, it is clear that
the parameters d0 and u lead the network to a synchro-
nization state passing by clusters formation. To bet-
ter appreciate these results, we have represented the
oscillators’ phase dynamics’ snapshots in Fig. 3 as well
as the agents’ phase dynamics’ snapshots in (in Fig. 4)
as a function of their indices (and irrespective of their
spatial position) for every number state of the system
mentioned above (i.e. for n = 1, n = 2, n = 3, n = 4

Fig. 3 Snapshots of the oscillators’ phase dynamics for dif-
ferent number of states as described in Fig. 2c

Fig. 4 Snapshots of the agents’ phase dynamics for differ-
ent number of states as described in Fig. 2d

and for n greater than or equal to 5 or desynchro-
nized).

3.2 Phase parameters’ influence on the network’s
dynamics

This section deals with the investigation of the oscilla-
tors’ parameters’ influence on the whole network. These
parameters are the coupling coefficient of the oscillators
k and D0, which controls the vision range of the oscilla-
tors. As done previously (Sect. 3.1), we proceed through
the order parameter to measure the level of the syn-
chronization between both oscillators and agents. The
results of this investigation as a function of the vision
range of the oscillators is presented in Fig. 5a. In this
figure, the curve in red shows the order parameter of the
oscillators and the curve in blue that of the agents. This
result suggests that depending on the value of D0, phase
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Fig. 5 Synchronization dynamics in the oscillator’s net-
work (red) and in the moving network (blue): a as a func-
tion of the values of the oscillators’ vision range D0 (u = 1,
k = 0.5, d0 = 2); b as a function of the values of the cou-
pling coefficient k (u = 1, D0 = 2, d0 = 2); c and d evolution
of the Largest Lyapunov Exponent in the oscillator’s net-
work, as a function of D0 for k = 0.5 and of k for D0 = 2
respectively

synchronization can occur in the system of oscillators.
But this parameter leads the agents towards a synchro-
nization state, thus proving that the vision range of
the oscillators has a particular impact on the synchro-
nization of the whole network. Using the same logic,
we present the order parameter of the oscillators (red)
and of the agents (blue) as a function of the coupling
coefficient k in Fig. 5b. This figure shows that the syn-
chronization occurs in both, oscillators and agents. To
understand the synchronization phenomenon, we study
the emergence and stability of the synchronization of
the oscillators using the master stability function (See
1). We present the Largest Lyapunov Exponent (LLE)
as a function of D0, for parameter values u = 1, k = 2
and d0 = 2 in Fig. 5c, where we notice that the Largest
Lyapunov Exponent is always greater than zero, which
corresponds to a class I master stability function [25].
According to this result, complete synchronization does
not exist between the oscillators when varying D0, for
k = 0.5. When varying k, we observe a type II mas-
ter stability function according to Boccaletti et al. [25]
(Fig. 5d). This parameter leads the oscillators to a state
of complete synchronization above the critical value kc

(kc = 1.635). Thus, we see that the coupling parameter
(k) has a great impact on the whole network.

To get an insight on the impact of the oscillators
parameters on the whole network, we plotted the order
parameter of the oscillators and the agents as a func-
tion of D0 and the coupling coefficient, k, simultane-
ously, which is shown in Fig. 6a, b for the oscillators and
agents respectively, with the parameter values u = 1,
d0 = 2. In this figure, the blue color shows where phase
synchronization does not exist in the oscillators nor in
the agents, while the red color characterizes complete
phase synchronization in both oscillators and agents.
We find that phase synchronization is unstable in both
oscillators and agents. This instability is characterized

Fig. 6 Dynamics of the whole network as a function of
k and D0 for the values of: u = 1 and d0 = 2. a order
parameter of the oscillator’s network; b order parameter of
the moving agents’ network. c and d number of states of
the oscillators’ and the agents’ networks respectively

by the spots observed in the red colored region. To
understand the dynamics of the region where synchro-
nization does not exist (blue), we used the number of
states to determine if clusters existed in the whole net-
work. Figure 6c, d present the distribution of the num-
ber of states in the oscillators and agents respectively in
the (k,D0) space. As before, we identified five domains
defined by five colors in these figures. The blue domain
represents the region of parameters where the number
of states is greater than or equal to five. In red, we iden-
tify the domain where the number of states (clusters) is
equal to four (n = 4) in both oscillators and agents; in
green we show the region where we have three (n = 3)
clusters and finally the yellow color delimits the region
where we have two (n = 2) clusters while pink shows
the region where we have only one (n = 1) cluster. The
result for n = 1 is confirmed by the order parameter red
shown in Fig. 6a, b. These results show that the emer-
gence of synchronization based on the vision range of
oscillators and the coupling coefficient passes through
the formation of clusters.

3.3 Agents’ and oscillators’ vision range’s mutual
influence on the network’s dynamics

According to Mahji et al. [19], it has been demonstrated
that, considering the vision range of the agents. the
oscillators may achieve complete synchronization. But
they did not take into account the effect of the vision
range of the oscillators on the dynamics of the agents.
In this section we investigate the impact of both vision
range of the agents as well as vision range of the oscil-
lators on the dynamics of the whole network. For this
study, we evaluate the order parameter in the agents
which we use to characterize phase synchronization in
the agents. For the case of the oscillators, we evalu-
ated the same order parameter and the Master Stability
Function to characterize phase and complete synchro-
nization.
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We explore the impact of the control parameters D0

and d0 on the dynamics of the oscillators of the net-
work (see Fig. 7). For a simultaneous variation of d0
between 0 and 3, and D0 between 0 and 10, and using
the MSF we identify a zone of complete synchroniza-
tion (CS), the zone of phase synchronization (PS) and
the zone where there is no synchronization (see fig. 7a).
Snapshots are provided to appreciate all three phases:
desynchronization, phase synchronization and complete
synchronization.

In Fig. 7b we show the results for the dynamics of
the agents: the order parameter is evaluated for the
agents for the same range of the value D0 and d0 used in
Fig. 7a. Here we distinguish two regions: PS, where we
have phase synchronization (in green) and DS, where
the synchronization does not exist (blue). Based on
Fig. 7a, b, we conclude that complete synchronization
in the oscillators does not automatically imply phase
synchronization in the agents. On the other hand, we
can have regions where phase synchronization in the
agents and oscillators coexist.

Following the same reasoning for the oscillators
(Fig. 8a), we evaluate the Master Stability Function as
a function of the coupling coefficient k and speed of
agents u simultaneously to identify the values of k and
u which lead oscillators to complete synchronization
(CS). We also evaluate the order parameter to identify
the values of these parameters which lead oscillators to
phase synchronization (PS) and where synchronization
does not exist (DS). The snapshot of the dynamics of
the oscillators for some chosen zones is represented in
Fig. 8a.

Figure 8b shows the order parameters for the agents.
This figure presents two different zones: the zone in
green presents the values of k and u which lead agents
to phase synchronization (PS) and secondly the zone in
blue is where synchronization does not exist (DS). This
figure also shows the agents’ phase dynamics’ snapshot
for each zone.

Following the same scheme, Fig. 9 shows the dynam-
ics of the whole system as function of the speed u
and the vision ranges delimiting parameters for the
agents and oscillators (d0 and D0). In this case, we
assume both vision range control parameters are iden-
tical (d = d0 = D0). Figure 9a presents the dynam-
ics of the oscillators as a function of the values of the
speed u and the vision ranges d. This figure shows three
domains, the domain where synchronization does not
exist (DS), where we obtain phase synchronization (PS)
and where we have complete synchronization (CP). Fig-
ure 9b shows the dynamics of the order parameter of the
agents. The region in green indicates where the agents
are in a synchronous state and the blue color indicates
where synchronization does not exist.

4 Conclusion

In this work, we proposed a mobile system consisting
of a network of agents with an oscillator associated to
it which has the same index numbers and represents its

Fig. 7 Order parameter of oscillators (a) and moving
agents (b) as a function of d0 and D0 (u = 1.5, k = 1.5).
DS, PS and CS indicate the regions where the network’s
elements are in a disordered phase state, phase synchroniza-
tion and complete synchronization respectively

internal dynamics, moving in a two dimensional space
whose topology changes according to the proximity of
the state of the oscillators and a network of oscillators,
whose dynamics changes according to the proximity of
the mobile agents. We have studied the influence of all
parameters in the complete system on the synchroniza-
tion dynamics of each part of the system. Using the
order parameter, we have shown the existence of syn-
chronization in the oscillators system (as mentioned in
the literature [19]) and in the agents system moving
in space under variation of the mobility parameters (d0
and u). This result is the same when we vary the param-
eters related to the oscillators’ system (D0 and k). The
analysis of the transition to synchronization allowed us
to show that the synchronization process in both the
oscillators’ and agents’ systems goes through clusters
formation. We also showed the stability of synchroniza-
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Fig. 8 Order parameter of oscillators (a) and agents (b)
as a function of the coupling coefficient k and the velocity
u (d0 = 2, D0 = 3). The surfaces DS, PS and CS indi-
cate respectively the regions where the network’s elements
are in a disordered phase state, phase synchronization and
complete synchronization

tion in the oscillator system using the master stability
function and obtained a class II master stability func-
tion according to Boccaletti et al. [25] with the coupling
coefficient (k), agents vision range control (d0) and
velocity (u). With regard to the oscillators’ vision range
control, depending on the range of values of the cou-
pling constant (k < kc), it does not lead the oscillators’
system to a stable synchronized state and we obtained
a class I master stability function. The mobile network
is more sensitive to the effects of the viewing distance
of the oscillators. These results are essential not only
because they contribute to a better understanding of
the phenomenon of synchronization in mobile systems,
but above all because they show that it is possible to
establish a link between the way agents move and their
internal dynamics. Overall, these results find applica-
tion in the coordination of group movements.

Fig. 9 Dynamics of oscillators (a) and moving agents (b)
as a function of the speed u and for the same value d for
d0 and D0 (d = d0 = D0) for k = 1.0. The surfaces DS,
PS and CS indicate respectively the regions where the net-
work’s elements are in a disordered phase state, phase syn-
chronization and complete synchronization

Acknowledgements HAC thanks ICTP-SAIFR and FAP
ESP grant 2016/01343–7 for partial support.

Appendix A: Evaluation of Order parameter

The Order parameter, defined by Kuramoto and Battogtokh
[27], is a good tool used to analyse phase synchronization
in coupled systems as well as in networks. The computation
of the Order parameter needs the phase of each system. To
calculate this phase, we consider an arbitrary time signal
s (τ) and s̃ (τ) being its Hilbert transform. We have:

ψ (τ) = s (τ) + js̃ (τ) = R (τ) ejϕ(τ) (A.1)

where R (τ) is the amplitude and ϕ (τ) the phase of the vari-
able s (τ). If we denote by ϕi (τ) the instantaneous phase,
then it can be determined by:

ϕi (τ) = tan−1

(
s̃i (τ)

si (τ)

)
(A.2)

The Order parameter for a system with N oscillators is
expressed as:
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r =
1

N

N∑
i=1

ejϕi (A.3)

Where j2 = −1. Phase synchronization is effective when the
value of r = 1 and when r = 0, the network is completely
desynchronized.

Appendix B: Evaluation of Master Stability
Function

Developed by Pecora and Carroll in 1998, the Master Sta-
bility Function (MSF) is the best tool used in a network
of coupled identical systems to demonstrate the stability
of the complete synchronization of the network [24,26].
To facilitate the comprehension of some results presented
in this paper, we develop here some important points of
this method. Let us consider an isolated system (oscillator)
defined by Eq. B.1:

ẋi = F (xi) (B.1)

Where xi is a vector of m-components used to describe
the state of the ith oscillator; F is a function defined from
Rm −→ Rm used to define the local synchrony of the oscil-
lators. Taking into account the interaction or the connection
between the N oscillators of the network, Eq. B.1 is not suf-
ficient to describe the dynamics of the network. Taking into
account the interactions the governing law of the ith oscil-
lator is given by:

ẋi = F (xi) + k
N∑

j=1

GijH (xj) (B.2)

In this equation (Eq. B.2), k represents the coupling stren-
gth; H : Rm −→ Rm is an arbitrary coupling function and
G is a Laplacian matrix. The oscillators of the network are
synchronized if all oscillators converge toward the same state
s such as x1 = x2 = ... = xN = s. It should be noted that,
for the N nodes we can design N state variables, N coupling
functions and N local functions F contained into the matrix
described respectively by Eqs. B.3, B.4 and B.5.

x = [x1; x2; ... ; xN ] (B.3)
H (x) = [H (x1) ; H (x2) ; ...; H (xN )] (B.4)
F (x) = [F (x1) ; F (x2) ; ...; F (xN )] (B.5)

Based on Eqs. B.3, B.4 and B.5, B.2 can be expressed in
compact form as:

ẋ = F (x) + kG ⊗ H (x) (B.6)

where ⊗ is the Kronecker product. For the case of our net-
work, we have:

F (xi) =

⎧⎨
⎩

−yi − zi

xi + ayi

b + (xi − c) zi

and H =

⎛
⎝ 0 0 0

0 1 0
0 0 0

⎞
⎠ (B.7)

Initially, we suppose that δxi is a small perturbation of the
ith oscillators of the network. After perturbation, the state
variable of the ith oscillators becomes xi = s + δxi. For the

whole network, the collection of the variation of the N oscil-
lators is expressed by δx = [δxi ; δxi ; ... ; δxi]. Replacing
the perturbation in Eq. B.2 and using the Taylor expansion
theorem for F (s + δxi) and H (s + δxi) to first order, the
following variational equation is obtained:

˙δxi = DF (s) .δxi + k

N∑
j=1

GijDH (s) .δxj (B.8)

where DF (s) and DH (s) are the N ×N Jacobian matrices
of the corresponding vector functions evaluated at the syn-
chronous state s (t). Equation B.8 is used to explore if the
synchronous state is stable or unstable. According to Pec-
cora and Carroll the use of tensor notation leads to Eq. B.9:

˙δx = [1N ⊗ DF (s) + kG ⊗ DH (s)].δx (B.9)

Due to the degree of Eq. B.9, the solution can be in the
form δxi ∼ exp(λit) where exponent λ helps to us to know
if the perturbation grows (λ > 0) or decays (λ < 0). So,
the digitalization of the second term of Eq. B.9 helps us to
obtain the following variational equation expressed as:

˙δxk = [DF (s) + kαkDH (s)] .δxk (B.10)

αk is the eigenvalue of the matrix G, k = 1, 2, ..., N .
Finally, these steps help us to design the following Master
Stability Eq. B.11:

˙δx = [DF (s) + αkDH (s)] .δx (B.11)

ased on refs [24,28] the synchronization is stable if the
largest Lyapunov Exponent computed from Eq. B.11 which
corresponds to the largest eigenvalue is negative and unsta-
ble otherwise.
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