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Abstract— Predicting epileptic seizure occurrence has long
been a goal of the community surrounding it. Accurate pre-
diction, however, is still elusive. This work presents a modified
pipeline for the training of seizure prediction systems which
aims to attenuate the effects of current data labeling strategies
- and consequent data mislabeling of samples that heavily affect
classifiers that are trained on it. This paper also presents
a seizure prediction system trained following the proposed
pipeline, which improved our system’s performance by reducing
its time-in-warning (TiW) by over 14%, while improving its pre-
diction sensitivity to 72.4%, bringing its performance closer to
the state-of-the-art performance (83.1% prediction sensitivity)
for systems with similar TiW (41%) [1], while only requiring
input from two scalp EEG electrodes - without making use of
any variables external to the single EEG channels.

I. INTRODUCTION

The capacity to predict epileptic seizures and give warn-
ings of their occurrence in advance could give patients
more independence from their caregivers. Patients could take
appropriate precautions or protection measures, substantially
improving their quality of life. Epistemic™ has developed
a prediction software based on the idea of the existence of
a preictal period with detectable characteristics in an EEG
signal. The software is proprietary an is based on non-
linear dynamical systems theory [2]. This article presents
a heuristic active learning process that improves the per-
formance of Epistemic™’s previously developed epileptic
seizure prediction software.

Seizures can be clearly identified from EEG graphs in
time by neurologists and other trained professionals. The
problem has always been automatizing this identification.
Citing R. P. Lesser, ”Seizure detection algorithms have been
used for several decades... Despite these, seizure detection
often seems easy for an EEGer, but hard for a machine” [3].

Likewise, Epistemic™’s prediction software presents re-
sults that can be identified by a trained professional to define
whether a seizure will happen in the near future. This article
proposes a new machine learning algorithm that substitutes
the trained professional with an automated methodology and
defines whether an EEG point in time presents the anomalies
expected in what we define as a pre-seizure. A pre-seizure

1 Epistemic Gomez & Gomez Ltda. ME - Av. Professor Lineu Prestes
2242, Cietec, sala 244, 05508-000, Cidade Universitria, Sao Paulo, Brazil
contato@epistemic.com.br

2 Escola Politecnica - USP, Universidade de Sao Paulo, Rua Profes-
sor Luciano Gualberto travessa 3, no 380, 05508-010 Sao Paulo, Brazil
joao.marques@usp.br

3 Instituto de Fisica Teorica - UNESP, Universidade Estadual Paulista,
Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra Funda, 01140-070 Sao
Paulo, Brazil cerdeira@ift.unesp.br

therefore is an anomaly that happens in a patient’s EEG time
series that is indicative of an incoming seizure. Combining
the active learning framework with Epistemic™’s prediction
software results in an automated system for seizure predic-
tion.

While the specifics of Epistemic™’s algorithm are kept as
a trade secret, the team will gladly provide the feature sets
used in this publication that were generated by the algorithm
for the sake of the reproducibility of the results upon request.

II. EPISTEMIC™’S PREVIOUS WORK

Many studies have found that epileptic seizures are not
sudden episodes, but they evolve over an interval of time
called preictal period [4]. The definition of a preictal period
per-se assumes that there are different behaviors in that
period when compared to the interictal period. Epistemic™’s
software is based on the assumption that anomalies in
the preictal stage can be discriminated from EEGs signal
behavior in preictal state.

A. Previous epistemic detection algorithm

Epistemic™’s previously developed epileptic seizure pre-
diction software performs two different transforms on the
EEG time series on a single EEG Channel. The input of
the software is sampled and digitized data from patients’
electroencephalogram (EEG) time series signals defined by
the difference in potential from a unique pair of electrodes.
The output are Transforms 1 and 2 as shown in Fig. 1.

Fig. 1. Epistemic™’s feature generation procedure

Both transforms have the purpose of indicating whether
an instability is present at a determined time in the EEG.
Epistemic™’s software gives an alert whenever both trans-
forms are indicating an instability simultaneously. For T1 that
happens when its three curves display a synchronous increase
in amplitude as shown in Fig 2. For T2 that happens when
its visual representation, usually similar to a single Gaussian
curve, changes format shown in Fig. 3.

This method, however, had a high Time-in-Warning, which
inspired the authors to pursue the framework described
below.



Fig. 2. Synchronous uptick in T1, indicative of a seizure warning

Fig. 3. Altered curve T2, also indicative of a seizure warning

III. DEFINITIONS

A. Formal Statement of the Problem

A peculiarity of the seizure prediction problem based on
EEG signals is that while there is literature backing for the
presence of discrete alteration of EEG patterns in the period
up to several hours before a seizure - also known as pre-
ictal -[5] , the precise characterization of such activity is
still elusive. As such, most machine learning approaches
to seizure prediction have relied on blindly labeling EEG
chunks according to their relative position to an observed
episode - i.e - labeling fixed-length snippets of EEG data
as pre-ictal if they corresponded to an hour [6] or fifteen
minutes [1] before the clinical onset of a seizure. This
procedure, however, leads to massive mislabeling of data,
since the alterations for which these studies search are often
described as brief [5] and surrounded by seemingly normal
brain activity. Hence, when labeling the data according to this
procedure, one would be labeling normal snippets as charac-
teristic of abnormal pre-ictal activity, which jeopardizes the
performance of most machine learning algorithms, causing
increased false positive rates.

This problem of data labeling under uncertain conditions
can be formalized in the following manner: Let there xi ∈X
denote the m-dimensional feature vector of the ith sample
of the data and X be the n×m feature matrix of a dataset
containing n samples with m features. Let yi ∈ L denote the

label attributed to sample i, unknown, belonging to the label
space of labels, L. Let O(x∈X,k ∈N) 7→L denote an oracle
that, when given a set of k samples xi from the feature space
X, provides them with k labels from the label space L , which
are stored in the label vector Ŷ . This oracle’s probability
of error, i.e., the probability that it will mislabel any given
sample i is given by an increasing function in the number of
labeled examples by the oracle, E(k ∈N) 7→ [0,1] ∈R. This
accuracy function models the falling accuracy of the oracle
due to the heuristic process of labeling data points based
solely on their time distance from any given seizure. This
function, however, may also be used in different contexts to
model other sorts of errors, which may happen when labeling
datasets, like increased error rates which are incurred when
labeling large datasets by hand or the increasing prevalence
of false positives caused by testing healthy people for a rare
disease by using a test that has a non-zero false positive
rate. We must then train a classifier on the dataset

(
X ,Ŷ

)
,

labeled by the oracle. The goal of the entire procedure is
to maximize performance, measured by some metric, of the
classifier C(x∈X) 7→L when applied to a real unseen dataset
(X ,Y ), whose performance will be verified ( in this specific
case) using the metrics defined by Snyder et al. [7]. This
pipeline can be summarized by figure 4, which depicts the
current procedure adopted by machine learning practitioners
in the research community - that is - the procedure of blindly
labeling all time-samples (be them frame-by-frame) or in
finite recordings with respect to to their position to the
clinical manifestation of the crisis.
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Fig. 4. Current procedure for training seizure prediction algorithms

B. Proposed Heuristic

While this problem cannot possibly have an analytic
solution until an oracle Accuracy function E(k) has been
defined, one way to approach this problem is by considering
it as a minmax problem, in which we wish to minimize the
number of examples necessary to maximize the performance
of the classifier. This minmax problem, when associated with
the knowledge that pre-ictal signals are surrounded by areas
of relative normal brain activity [5], allows this problem
to be tackled heuristically. Our proposed heuristic separates
this problem into two distinct phases: the data selection and
classifier training.

In order to tackle the problem of decreasing oracle ac-
curacy, an alteration is proposed to this pipeline, in which
we introduce an entity called the example selector. This
entity is responsible for selecting the least possible number
of examples that would suffice for the training of a well-
performing classifier. One way of doing so is treating the
example selector as an outlier detector, which selects only



outliers to be used for both training the classifier and
classifying after training. This detector must be calibrated,
however, in order to avoid being too strict (and consequently
miss relevant seizure-indicating outliers) or too permissive,
increasing the number of fed into the Oracle, increasing the
number of Oracle mislabelings.

This outlier detection calibration problem is then defined
as follows: Let there stot denote the total number of seizures
si that have been identified in the training files. Let us also
define as potentially pre-ictal, ppisi , all data points located
up to 15 minutes before the clinical onset of a seizure si; as
potentially interictal, pii, all the points which are outside this
interval; and as certainly ictal, cisi , all the points contained
within the reported clinical onset of seizure si and up to ten
minutes after its end, to allow for the normalization of brain
activity after an event. These labels constitute the label set L.
Finally, let Ω be the set of all outliers detected by an outlier
detector D. Let us define the representation, rsi , of a given
seizure si by equation 1. The coverage Γ(D) of an outlier
detector D is defined according to equation 2. Finally, let us
define the pseudo-accuracy of the detector Ψ according to
equation 3, where | · | is the cardinality of the set.

rsi =

{
1, if ∃y ∈Ω such that y ∈ [cisi , ppisi ]

0, else
(1)

Γ(D) =
(

∑
stot
i=1 rsi

stot

)
(2)

Ψ(D) =
|y ∈Ω such that y 6= pii|

|Ω|
(3)

The problem of finding the optimal detector Dbest for this
case was then heuristically defined according to equation
4. In practice, the problem was thus defined in order to
ensure that the selected detector had the best possible pseudo-
accuracy while guaranteeing it would not be overly restrictive
to the point of jeopardizing its coverage.

Dbest = argmax
D

(
Ψ(D)Γ(D)2) (4)

Once the outlier detector is defined, the labels of each
outlier in Ω are then considered as the labels provided by
the oracle and these points are used to constitute the labeled
training dataset (Xtrain,Ŷtrain) which is then used to train
the classifier C. Once tuned and trained, the entire system
(detector + classifier) is exposed to a test set - and its
warnings are evaluated according to the same criterion as
before, i.e., if they occur up to 15 minutes before a seizure
or during a seizure they are considered as a true positive and
as a false positive otherwise. The resulting pipeline of the
proposed solution can be seen in figure 5

IV. METHODS

A. Data

In this paper, we used the CHB-MIT Scalp EEG Database
[8], [9]. This dataset is originally comprised of 23 cases
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Fig. 5. Proposed procedure for training seizure prediction algorithms

collected from 22 pediatric patients with intractable seizures
(5 males aged between 3 and 22 and 17 females aged
between 1.5 and 19). Each of the cases, labeled chb01-chb23,
contains between 9 and 42 continuous .edf files from the
same subject. Each recording was made at 256Hz with 16-
bit resolution. The complete dataset is comprised of 664
.edf files, 129 of which contain seizures. Besides running
the files through Epistemic™’s proprietary software, a few
considerations were done when pre-processing the data to
be used in this paper. Firstly, data from patient CHB24 was
discarded, as its files do not contain the times when each
of the files were collected - thus making it impossible to
establish if any given point in them occurred before a seizure.
For the same reason, files that were isolated in time - that
is, with relevant gaps in time before and after them, like file
chb08 29, were also disconsidered in this analysis, as the
large gaps between themselves and the following files, and
the lack of annotations regarding the time in-between them,
make it impossible to accurately label their points. Other
than that, no additional preprocessing was done to the files.
The files were then split by patient, then split again in two
categories, that of files that contained seizures and that of
files that did not. Each category was then chronologically
split in a proportion of 80-20, assigning the first 80% of
the files as training files and the remaining 20% as test files.
The training files were then again split chronologically in the
same 80-20 proportion, with the initial 80% of the training
files being assigned to training and the remaining 20% to
validation. This chronological split was done in order to
avoid data leakage and ensure the robustness of the validation
process - i.e. avoiding validating or testing using data from
the past on a model that was trained on future data.

B. Outlier Detector

As mentioned previously,Epistemic™’s prediction soft-
ware creates visual representation that indicates anomalies in
EEG time-signals. These are curves for every time interval
whose shapes are related to the possibility of a pre-seizure
state of the EEG. For instance, figure 6 indicates a curve
highly associated with pre-seizures, figure 7 indicates one
that is a strong indication of no upcoming seizures and figure
8 represents a curve whose warning status is uncertain. In
addition, we have come to believe that the evolution of these
curves in time is also valuable for detection, as the evolution
of the topography of the curve is also correlated with the



occurrence of a seizure. It is, therefore, also essential to find
the optimal number of frames of past conditioning curves
(T2) to fully characterize a given data point in the EEG.
These curves are numerically calculated in real-time and they
are not easily parametrized to substitute visual inspection.
However, they can be satisfactorily described by a set of
few points, namely the local extrema. The coordinates of
these points in the graph were then used to construct the
feature vector vi of each of the frames in the EEG, namely
vi = [xpeak1,ypeak1,xpeak2,ypeak2,xvalley1,yvalley1].

Fig. 6. Conditioning Curve T2 highly related to seizure warnings

Fig. 7. Conditioning Curve T2 not related to seizure warnings

While there exist several viable strategies to perform
outlier detection, such as Isolation Forests [10], Long Short
Term Memory Networks [11], Hierarchical Temporal Mem-
ory based algorithms [12], we have decided to implement a
simpler strategy inspired by two-tailed statistical tests which
are easier to interpret. Let us first define the set of parameters
used in this detector. Let there TW denote the number of
frames of the conditioning curves that are considered at any
given moment when evaluating the anomaly status of a given
step in the EEG. Let skip denote the number of frames
skipped between consecutive frames when constructing the
following observation window. That is, for every frame of the
EEG i, a feature vector xi is build according to (5), defining
the window set of each sample i, W = [i, i− skip, · · · , i−
TW · skip].

Fig. 8. Conditioning curve T2 with unkown relation to seizure warnings

xi =
[
vi,vi−skip,vi−2·skip, · · · ,vi−TW ·skip

]
(5)

Let us define as well µdi ,σdi as the rolling mean and
rolling standard deviation of the distance between peaks di
within each frame, i.e., di = xpeak2i − xpeak1i , defined over a
window of stability of 20,000 frames. The outlier detector
was then defined according to (6), where DF is the minimum
fraction of samples in a window that have to be outliers
for the total feature vector to be considered an outlier, outi
is defined in (7), where DFM is the minimum number of
standard deviations from the mean necessary to consider the
differences between peaks an outlier and MR is the minimum
ratio between the y coordinates of the peaks so that this
outlier is considered relevant.

D(xi) =

{
1, if ∑i∈W(outi)

TW+1 > DF
0, else

(6)

outi =

{
1, if (di−µdi > DFM ·σdi)&

(
ypeak2i−yvalleyi
ypeak1i−yvalleyi

> MR
)

0, else
(7)

Together, TW, skip, DF, DFM, MR are the set of param-
eters to be adjusted for this outlier detector. As mentioned
previously, this setup is highly interpretable, since DFM can
be associated intuitively with a p-value for the observed
distance between peaks and TW and skip provide us with an
intuitive sense of a relevant duration window to be observed.
The adjustment of these hyperparameters was done through
a process of Bayesian optimization performed exclusively
on the training files, using the Python implementation of
the BayesianOptimization library [13], inspired by [14]. The
results of this process are reported in the following section.

C. Classifier

For the seizure prediction task a standard gradient boost-
ing classifier was used, CatBoost [15], namely its python
implementation. One of the advantages of CatBoost is that
its performance is robust to hyperparameter choice, unlike
other boosting libraries such as XGBoost [16], [15]. In order
to ease the evaluation of the model during training, the



classification problem was turned into a binary classification
problem, with frames labeled as ppisi or cisi being labeled as
True, while the remaning frames were labeled as False. This
was done so that the validation metric used, Area Under the
Receiver Operating Characteristic curve (AUROC) could be
used unequivocally, which has several benefits as reported by
[17], particularly when dealing with a classification problem
with severe class imbalance. We note, however, that during
the evaluation procedure, only ppisi points are considered as
a True prediction.

D. Evaluation

Once the system has been trained to optimize the AUROC,
we then evaluate both the validation and testing performance
following the procedure defined by [7]. In their paper, Snyder
et al. [7] describe a set of 4 performance metrics for seizure
prediction systems, namely: Prediction Sensitivity, Time-in-
Warning (TiW), Improvement-Over-Chance (IoC), as well
as the p-value associated with that IoC. The prediction
sensitivity is the ratio between the number of seizures that
were predicted by your system within the specified prediction
window (in our case, of 15 minutes). Considering that every
time a system emits an alarm indicating an upcoming seizure
the detector remains in a warning state for the duration of
its prediction window, Snyder et al. define the TiW as being
the fraction of total experiment time that a system spends
in a state of warning. For instance, should a system remain
in warning for 2 hours during a 10-hour experiment, that
system’s TiW would be of 0.2. Considering the TiW metric
of a given system, Snyder et al. define a random system
with an identical expected TiW to that system. This random
system has an expected sensitivity associated to it. The
difference between the sensitivities of system being evaluated
and the random system with identical TiW is defined as being
the IoC of the system.

V. RESULTS

A. Outlier Detection Results

The optimization of the outlier detector was done using
the reinforcement learning library for Gaussian optimization
BayesianOptimization [13], inspired by [14]. The optimal
parameters for the outlier detector can be found in tableI,
while its performance in both the validation and test sets can
be found in Fig. 9, where it can be seen that coverage above
90% was obtained by our proposed heuristic, while keeping
the pseudo-accuracy above 3% even in the files within the
testing dataset, which were not used in the optimization,
following standard machine learning procedures to avoid data
leakage. The outliers identified by this detector were then
used in the following step of training the seizure prediction
algorithm.

B. Supervised Classification Results

We then trained the classifier on the labeled outlier
database created in the previous step. For this step we used
a Catboost Classifier[15] with default parameters. This clas-
sifier’s performance can be seen in Fig. 12. The validation

TABLE I
OPTIMAL OUTLIER DETECTOR PARAMETERS

Skip TW DFM MR DF
0 10 3.1 0.06 0.45

Fig. 9. Outlier detector performance metrics

performance is, as expected, higher than test performance.
That was expected, since the validation dataset takes place
closer in time to the training dataset, and it is known that
the circadian rhythm has As a final step in the calibration
step we then calibrated a leaky accumulator to the end of
our classifier, to help reduce the time-in-warning of the
system, as proposed by [1]. In order to do so we looked
at cumulative histograms of our validation data for both the
probability assigned by the classifier as well as the number
of consecutive warnings, which can be seen, respectively, in
figures 10 and 11, from which we inferred that the optimal
parameters for this accumulator were a probability higher
than 0.5 and a number of at least 10 consecutive frames of
warning in order to consider a warning was indeed triggered.
Once these parameters had been defined, we finally evaluated
our complete model- Outlier Detector + Classifier + Leaky
Accumulator according to the metrics defined in [7].

Fig. 10. Trained Classifier AUROC performance for outlier classification
task

C. Seizure Prediction Results

The final results obtained by our combined system are
reported in table II as an aggregate of the performance for
all patients.



Fig. 11. Cumulative normalized histogram plot of consecutive warnings

Fig. 12. Cumulative normalized histogram of classifier-assigned probabil-
ities

TABLE II
FINAL PREDICTOR PERFORMANCE METRICS

Database
(Algorithm) stot IoC Sensitivity TiW p-value

(IoC)
Validation(new) 18 0.45 0.88 0.46 < 0.0002

Test(new) 29 0.34 0.74 0.41 < 0.0003
Full(old) 169 0.15 0.67 0.55 < 0.0005

VI. DISCUSSION

As can be seen in table II, our proposed system achieved
(marked as ”new”) a test prediction sensitivity of 74% with
a TiW of 41%. This test performance more than doubles
the IoC of our previous algorithm (denoted in the table as
”old”, in the last row), increasing sensitivity by 10% and
reducing the system’s TiW by 25%. When compared to
the state-of-the-art for systems with similar TiW, such as
the one reported in [1], which presented 83.1% prediction
sensitivity with 41% TiW , our system presents a comparable,
though slightly inferior performance. Our proposed system
also has the added benefit of relying solely on two EEG
electrodes to perform its prediction task, as well as working
with scalp EEGs, rather than implanted ones, which is
considerably less invasive for patients and less likely to result
in medical complications. This proposed system, is therefore,
an important step in developing a practical portable seizure

prediction system that is viable and minimally invasive. It
is also notable that only a single model was trained using
the data from all patients combined. It is known, however,
that many of the features governing seizure prediction tend
to be patient specific [1]. It is, therefore, expected that if the
models were to be trained on a patient-specific basis, our
system’s performance would be further improved.

VII. FUTURE RESEARCH

The following steps in this research will be to apply this
method to bigger databases of EEG signals which has a wider
range of patients and a database which has longer-term data
for a smaller number of patients. Larger databases will allow
us to verify the effects of tuning the outlier detector on a
patient-specific manner on the overall performance of the
outlier detector system, as well as provide us with a larger
set of epilepsy types, to ensure the robustness of our system.

REFERENCES

[1] I. Kiral-Kornek, S. Roy, E. Nurse, B. Mashford, P. Karoly, T. Carroll,
D. Payne, S. Saha, S. Baldassano, T. O’Brien, D. Grayden, M. Cook,
D. Freestone, and S. Harrer, “Epileptic Seizure Prediction Using Big
Data and Deep Learning: Toward a Mobile System,” EBioMedicine,
vol. 27, pp. 103–111, 1 2018.

[2] H. A. Cerdeira and P. Gomez, “Early Detection of Epileptic Seizures,”
in IWSP7:Epilepsy Mechanisms, Models, Prediction and Control,
(Melbourne), 2015.

[3] R. P. Lesser and W. R. S. Webber, “Seizure detection: reaching through
the looking glass.,” Clinical neurophysiology : official journal of
the International Federation of Clinical Neurophysiology, vol. 119,
pp. 2667–8, 12 2008.

[4] Shufang Li, Weidong Zhou, Qi Yuan, and Yinxia Liu, “Seizure
Prediction Using Spike Rate of Intracranial EEG,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 21, pp. 880–
886, 11 2013.

[5] B. Litt, R. Esteller, J. Echauz, M. D’Alessandro, R. Shor, T. Henry,
P. Pennell, C. Epstein, R. Bakay, M. Dichter, and G. Vachtsevanos,
“Epileptic Seizures May Begin Hours in Advance of Clinical Onset:
A Report of Five Patients*,” in Applications of Intelligent Control to
Engineering Systems, pp. 225–245, Dordrecht: Springer Netherlands,
2009.

[6] S. Jukic and A. Subasi, “A MapReduce-based rotation forest classifier
for epileptic seizure prediction,” CoRR, vol. abs/1712.0, 2017.

[7] D. E. Snyder, J. Echauz, D. B. Grimes, and B. Litt, “The Statistics of
a Practical Seizure Warning System,” Journal of neural engineering,
vol. 5, pp. 392–401, 12 2008.

[8] A. H. Shoeb, Application of machine learning to epileptic seizure
onset detection and treatment. PhD thesis, Massachusetts Institute
of Technology, 2009.

[9] A. L. Goldberger, L. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley,
“PhysioBank, PhysioToolkit, and PhysioNet: Circulation,” Discovery,
vol. 101, no. 23, p. 1, 1997.

[10] K. M. Ting, F. T. Liu, and Z. Zhou, “Isolation Forest,” in 2008 Eighth
IEEE International Conference on Data Mining(ICDM), vol. 00,
pp. 413–422, 2008.

[11] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term mem-
ory networks for anomaly detection in time series,” in Proceedings,
p. 89, Presses universitaires de Louvain, 2015.

[12] A. Lavin and S. Ahmad, “Evaluating Real-Time Anomaly Detection
Algorithms – The Numenta Anomaly Benchmark,” in 2015 IEEE
14th International Conference on Machine Learning and Applications
(ICMLA), pp. 38–44, IEEE, 12 2015.

[13] F. Nogueira, “Bayesian Optimization: Open source constrained global
optimization tool for Python,” 0.

[14] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian op-
timization of machine learning algorithms,” in Advances in neural
information processing systems, pp. 2951–2959, 2012.



[15] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and
A. Gulin, “CatBoost: unbiased boosting with categorical features,”
arXiv preprint arXiv:1706.09516, 2017.

[16] T. Chen and C. Guestrin, “{XGBoost}: A Scalable Tree Boosting
System,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16,
(New York, NY, USA), pp. 785–794, ACM, 2016.

[17] A. P. Bradley, “The use of the area under the ROC curve in the eval-
uation of machine learning algorithms,” Pattern Recognition, vol. 30,
pp. 1145–1159, 7 1997.


