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We report a simple model of two drive-response-type coupled chaotic oscillators, where the response system
copies the nonlinearity of the driver system. It leads to a coherent motion of the trajectories of the coupled
systems that establishes a constant separating distance in time between the driver and the response attractors,
and their distance depends upon the initial state. The coupled system responds to external obstacles, modeled by
short-duration pulses acting either on the driver or the response system, by a coherent shifting of the distance,
and it is able to readjust their distance as and when necessary via mutual exchange of feedback information. We
confirm these behaviors with examples of a jerk system, the paradigmatic Rössler system, a tunnel diode system
and a Josephson junction–based jerk system, analytically, to an extent, and mostly numerically.
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I. INTRODUCTION

Studies on synchronization of dynamical systems started
with Christiaan Huygens in 1665 [1] and, in the past three
decades, have become a subject of intensive research with
prospective applications in practical systems [2] mainly due
to the confirmation of the existence of synchronization in
chaotic systems [3,4]. Although the technological prospect
is not promising [5], so far, studies on synchronization are
able to explain many natural behaviors [3,6,7]. In the past 15
years, the synchronization studies have been extended from
a small ensemble of dynamical systems to a large network
of oscillators [3]. The current focus is on investigations
of complex networks [8–10], small world and scale-free
networks, and additionally, attributing dynamics to individual
nodes of a network.

A related issue of concern is how an ensemble of dynamical
units organizes a collective motion. How robust is this self-
organized behavior against external perturbation? Is there any
internal mechanism of restoring a desired state of activity?
An interesting example of a collective activity in motion is
the flocking of birds [11–13], which has shown collective
decision-making during their flights in a coherent manner. A
leader-follower-type cohesive motion prevails in the flocking
of starlings, swimming fishes, where it is important that
the follower copies [14–16] the decision-making process
of the leader. The collective motion of such living objects
is difficult to understand and usually explained using the
concept of statistical mechanics. A dynamical system approach
may provide additional clues to unravel the mystery of such
cohesive motion. We investigate a simple dynamical model
of two drive-response-type coupled systems that creates a
coherent leader-follower dynamics in state space. In this
context, we apply a type of unidirectional interaction as

typically used for leader-follower coherent dynamics. It is
well known [1,3,4] that, using a simple diffusive coupling, one
can establish coherent dynamics of different forms, complete
synchronization (CS), phase synchronization (PS), or general-
ized synchronization (GS) in chaotic systems [17,18]. Pecora
and Carroll [4] defined the coupling as diffusive, scalar type,
using single variable separately when the coupling threshold
for synchronization differs for each type. Their goal was to
achieve complete synchronization. In our case the target is to
realize a coherent motion between two chaotic attractors, but
with a distance of separation between them. To achieve it, we
derive the coupling functions using the Lyapunov function
stability. To obtain this goal we make a slightly different
proposition that the response dynamical system or the follower
makes a decision of copying the nonlinearity function of the
driver system that establishes a type of unidirectional coupling
interaction with the driver. A situation eventually emerges
when the response attractor certainly realizes a type of coherent
dynamics, however, atypically maintains a constant distance
with the driver. More categorically, in the dynamical sense,
a subgroup of response variables has identical amplitude and
phase with their corresponding driver variables but preserves a
constant distance, while the rest of the pairs of driver-response
variables keep identical amplitude and phase with no distance
of separation in time. As a whole, it reflects a scenario where
the trajectories of a pair of leader-follower attractors establish a
form of coherent motion with a constant distance of separation
in state space. The separating distance is decided by the initial
distance where they start from. This leads us to draw an analogy
with the coherent motion of two flying birds following each
other in a leader-follower strategy but keeping a safe distance.
The analogy seems more realistic when we study the response
of the coherent oscillators, both the leader and follower, to
external pulses.
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We first present a simple two-coupled model of a jerk
system to illustrate the coherent dynamics with a leader-
follower strategy. Next, we model a situation to find the
reaction of this coherent dynamics to an external disturbance
by applying an external impulse. The response attractor moves
away from the driver in response to the external impulse; it
creates an additional distance further away from the original
distance with the driver that depends upon the height and
duration of the external impulse. The response system can
restore its original position when a negative pulse is applied or
an appropriate feedback pulse is sent to the driver. This overall
coherent dynamics is not restricted to the jerk system only; we
have confirmed the phenomenon in the Rössler system as well
as the tunnel diode systems and Josephson junctions based
jerk system, where we use the same strategy of appropriately
copying the nonlinearity of the driver into the response system,
as shown in the Appendices A, B, and C.

Summarizing, we introduce the concept of synchronization
as a coherent motion of the trajectories of a pair of leader-
follower dynamical systems and their displacement, their
responses to external disturbances, and a possible technique
of how they restore their original positions in state space.

II. COHERENT DYNAMICS: DISPLACEMENT OF
COUPLED SYSTEMS

We consider two unidirectionally coupled jerk systems,1

where the nonlinearity appears in a piecewise linear form. The
driver system, X = [x1,x2,x3], is

ẋ1 = I (x2) + ε1δM (τ ), ẋ2 = α[−x3 + I (x2)],

ẋ3 = β(−x1 + x2 − γ x3), (1)

and the response system, Y = [y1,y2,y3], is

ẏ1 = I (x2) + ε2δS(τ ), ẏ2 = α[−y3 + I (x2)],

ẏ3 = β(−y1 + y2 − γy3), (2)

where the piecewise linear function is

I (x2) =
{−x2, if x2 � 1,

−1, otherwise, (3)

and

δi(τ ) =
{
hi, if τ ∈ [τi,τi(1 + μi)],
0, otherwise, i = M,S. (4)

ε1,2 = 1 corresponds to the application of impulses of height hi

and duration μi to both the driver and the response oscillators,
and ε1,2 = 0 for no external impulse. The piecewise linear
term I (x2) of the driver is copied in the response system
and basically, a unidirectional coupling is thereby established

1A system is called jerk when the flow can be rewritten as a third
order differential equation in a single scalar variable [19,24,25], When
ε1,2 = 0, we can rewrite Eq. (1) as:

...
x 2 = α

(
−β

(
−ẋ1 + ẋ2 − γ ẍ1 + γ

α
ẍ2

)
+ ...

x 1

)
.

where ẍ1 = I ′(x2)ẋ2 and
...
x 1 = I ′′(x2)ẋ2

2 + I ′(x2)ẍ2.
...
x 2 is called jerk

function.

between the two jerk systems. The error dynamics is defined
by ei = xi − yi ,

ė1 = 0, ė2 = −αe3, ė3 = β(−e1 + e2 − γ e3). (5)

Based on the following selected Lyapunov function,

V = 1

2

(
e2

1 + 1

α
e2

2 + 1

β
e2

3

)
, (6)

it is established (assuming α > 0,β > 0 and γ > 0) that the
system defined by Eq. (5) is practically stable [20] since
the time derivative of the Lyapunov function in Eq. (6) is
bounded by a positive constant. This also means that the error
between the driver and response systems is sufficiently small,
but different from zero and could be considered as a tolerance
in the synchronization condition [21,22]:

V̇ � e2
1

4γ
. (7)

This boundedness is ensured by the fact that e1(τ ) is constant
[see Eq. (5)]. A type of GS thus emerges between the driver
and response when two pairs of state variables of the coupled
system are identical in phase and amplitude but maintain a
constant distance of separation (say, d, when x1 = y1 + d1,
x2 = y2 + d2) while the third pair of variables is in a state
of CS of amplitude and phase with zero distance (x3 = y3).
We have verified numerically that the constant distance of
separation and the copy of the nonlinearity of the driver by
the response are necessary conditions to obtain the emergent
GS. We also notice that the jerk system is invariant under the
transformation x1− > x1 + d, x2− > x2 + d, but this is not
the case in the other systems studied (see Appendices).

For numerical confirmation, we choose a set of parameters,
α = 0.025, β = 0.765, γ = 0.0938 such that the stability
condition (β = 4α/γ 2) is satisfied; the initial conditions are
chosen as (0.1, − 5 × 10−7, − 1) for the driver system and
(0.7,0.5,0.7) for the response system. We notice a displace-
ment of the response attractor from the driver attractor that is
guided by the initial conditions. For a visual demonstration,
we fix the initial conditions of the driver and change the
initial conditions of the response system; the driver and the
response systems maintain GS, as explained above, but change
the distance of separation with varying initial conditions as
shown in state space in Fig. 1. We reset x1(0) = 0 and plot
the driver attractor (blue) as well as the response attractor
for two different initial conditions, (a) y1(0) = 40 (green),
(b) y1(0) = −40 (red), in Figs. 1(a) and 1(b), respectively.
The response attractor thus moves away from the driver for a
change of one initial condition only in e1(0) = x1(0) − y1(0),
while the other initial condition is kept unchanged. To quantify
the displacement, in other words, the distance of separation
between the two systems, we define a measure,

d = sgn y1(0) ×
√√√√ 3∑

i=1

(xi − yi)2. (8)

The distance d of the response attractor from the driver
attractor, for various choices of y1(0), is plotted in Fig. 1(c). In
all the cases, the distance d is stabilized in time to a constant
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FIG. 1. Displacement of response attractors for (a) y1(0) = 40
(green), (b) y1(0) = −40 (red) from the driver (blue), (c) plot of the
distance between drive (blue) and response attractors for different ini-
tial conditions of y1 for fixed set of {x1(0),x2(0),x3(0),y2(0),y3(0)} =
{0, − 5 × 10−7, − 1,0.5,0.7}. Other parameters: α = 0.025, β =
0.765, γ = 0.0938, ε1,2 = 0.

value after initial small oscillations as decided by different
choices of initial conditions.

A. Displacement of response attractor: External impulse

We find a very interesting consequence of this nontrivial
leader-follower coherent dynamics with a distance of separa-
tion between the two attractors. We apply an external impulse
in the form of a square pulse to the response system by setting
ε1 = 0 and ε2 = 1. It appears from Fig. 2(a) that the response
variable y1 (red line) jumps to a higher level at the start
of the impulse (green). As already established by Eqs. (5)
and (7) that e3(t) → 0 and it implies e1 = e2(t) → ζ and equal
to the initial difference e1(0) = x1(0) − y1(0). Obviously, the
response variable y2 faces a similar kicking (not shown here)
while y3 remains unchanged since it always maintains CS
with x3. This asserts that the y3 variable, despite receiving an
initial kick, restores its original position quickly (after a small
transient), as shown in Fig. 2(b), while y1(y2) continues to
maintain the distance d1(d2) with x1(x2). Eventually, the driver
and response attractors establish a new distance of separation
and maintain it for the long run as shown in Fig. 2(c); they
never lose their coherent dynamics. The additional distance
of separation in response to the external impulse has a finite
value that depends upon hi and μi of the pulse.

We mention here that, for simplicity, we use a set of initial
conditions so that e1 = x1(0) − y1(0) = 0 before applying the
pulse, and hence the drive-response system has zero distance
of separation in the beginning. A separating distance d1 (d2)
is created between x1 and y1 (x2 and y2) by the impact of
the pulse and this distance varies linearly with the height h

of an impulse for a fixed μ (not shown here). On the other
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FIG. 2. Displacement of the response attractor by external im-
pulse. Upper panel shows the driver variable (blue line) x1, response
variable (red line) y1, and the external short pulse (green line). Middle
panel shows driver (x3) and response variables (y3). Lower panel
shows that the response attractor (red line) moves further away from
the driver (blue).

hand, when varying the width of the pulse with a fixed h, we
obtain three different kinds of behaviors (regions I, II, and III)
as shown in Fig. 3(a). It clearly reflects that, for a reasonably
large range of μ (fixed h), the impulse has no influence on d1,
which follows its initial value d1 = e1 = x1(0) − y1(0) and then
exponentially increases and finally saturates at a constant value
for large μ. Note that d1 appears to be 0 in Fig. 3(a) in the lower
range of μ. An enlarged view of regions I and II in Fig. 3(b), in
the lower range of μ, reveals the actual scenario. The distance
d1 remains constant with μ and then, to our surprise, it becomes
exponentially zero at a critical value near μ = −8 (in log scale)
(region II) where CS is established between the attractors (no
distance of separation) before it starts increasing exponentially
once again with the further increase of μ [region II, Figs. 3(a)
and 3(b)].

The most interesting behavior appears in region II: instead
of changing y1(0) if x1(0) (an initial value of the driver) is
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FIG. 3. Separating distance of the drive-response attractors
against the width μ of the external pulse for x1(0) = 10 and y1(0) = 0.
Panel (a) and its zoom, panel (b), show the stable distance d1 =
x1 − y1 in region I and its nonlinear behavior in region II. Panel (c)
shows that the nonlinear behavior of d1 in region II depends strongly
on the sign of x1(0) since y1(0) = 0. We found that this depends on
the Lyapunov function, as explained in the text.

varied, d1 is found sensitive to the sign and absolute value of
x1(0). Figure 3(c) shows that, for x1(0) > 0, a critical value
of μ exists, such that for any set of (x1(0),y1(0)), the coupled
system achieves a CS state when d1 � 0. In contrast, for
negative values of x1(0) < 0, the attractors never come close
rather their distance of separation increases exponentially in
the large limit of μ. An important point to note that, in all the
cases, in the lower limit and for a reasonably large range of μ,
this variation has no effect on the response system. Considering
the impulse in the coupled system Eqs. (1)–(4), the new error
dynamics is written as

ė1 = −δ(τ ), ė2 = −αe3, ė3 = β(−e1 + e2 − γ e3), (9)

and the time derivative of the Lyapunov function in Eq. (6) is
given by

V̇1 � e2
1

4γ
− δ(τ )e1. (10)

Without the impulse, e1(τ ) is a constant and equal to e1(0),
thus one can conclude that the impulse introduces an amount
of energy to the response system, which could be assumed
proportional to the area of the impulse Eimp = e1(0)hμ.
Accordingly, if x1(0) < 0, it implies e1(0) < 0 and the time
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FIG. 4. Effect of two opposite impulses on the response system.
Initial conditions are assumed identical, x1(0) = y1(0) = 0 and hence
it shows that the systems are not separated before the application of
an impulse.

derivative of the Lyapunov function becomes

V̇1 � e2
1

4γ
+ δ(τ )|e1|. (11)

The response system obviously receives sufficient energy to
move away from the initial distance (region I) or to the final
saturation distance (region III) asymptotically as we increase
the energy Eimp by increasing μ. However, if x1(0) > 0,
e1(0) > 0 the time derivative of the Lyapunov function in
Eq. (10) is given by

V̇1 �
∣∣∣∣ e2

1

4γ
− δ(τ )e1

∣∣∣∣. (12)

Therefore, at a critical value μ =μC = e1

4γ h
, the Lyapunov

function follows the relation V̇ � 0.
Next, we investigate what happens to the leader-follower

dynamics when a second impulse negative but equal in
magnitude and width to the first impulse is applied to the
response. It appears that the second impulse cancels out the
effect of the first. The drive and response systems coincide
again when the injected energy is removed by the application
of a negative impulse as seen in Fig. 4. Figure 4(a) shows
the time series of the drive and the response systems, x1 and
y1, respectively. Figure 4(b) shows that the response attractor,
after a departure to a targeted distance, returns to the original
position and merges with the driver attractor. Arrows show the
direction of movements.
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FIG. 5. Impact of two delayed pulses δi(τ ), i = S,M on the
systems with ε1 = −1 and x1(0) = y1(0) = 0. Panel (a) shows the
time histories of the signals x1(τ ) (blue solid), y1(τ ) (red solid line)
and the impulses δS(τ ) (green solid line) and δM (τ ) (violet solid
line). The first impulse from δS(τ ) produces the first jump of the
response while the second is the consequence of the negative δM (τ ).
The synchronization is finally reached due to a negative impulse
which respects the relation δS(τ ) − δM (τ ). Panel (b) presents the
same behavior in the plane (x1(τ ),x2(τ )).

B. Displacement of attractors: Multiple impulses

We now consider the case where both the driver and the
response (or slave) systems receive separate impulses one
after another. We first inject a positive impulse (green) to the
response system and then apply another impulse (magenta),
of same height and width but negative, to the driver after
a finite delay, as shown in Fig. 5(a). Finally, a third one, a
negative impulse (green) is sent to the slave an instant later.
The response system is subjected to two successive jumps.

The first jump of the slave system (red line) is provoked by
the injection of δS(τ ) while the second one is the consequence
of the application of δM (τ ) to the driver. It is interesting to
observe that the driver makes a jump by the direct impulse
δM (τ ) on it, however, it restores its original position (blue
line) after a transient time, while the response oscillator needs
a negative impulse equal to the total area of the two inputs
δS(τ ) and δM (τ ) to restore its original distance (zero distance
in this particular example case) with the driver as shown in
Figs. 5(a) and 5(b). This suggests that whatever be the number
of external impulses the oscillators receive, the number of
impulses applied to the response system to restore its original
position of coincidence, should be equal and opposite to the
sum of all the inputs. Figure 5(b) summarizes the whole
story in 2D projections of the trajectories showing that both
the attractors, the driver (blue) and the response (red), start
from a coinciding position. The response attractor jumps to
a higher location along the green line (green arrows) due to
the first impulse δS(τ ), and a second jump reaching another
higher level along the magenta line (magenta arrows) for a
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50δS(τ )

50δM(τ )

FIG. 6. Impact of two delayed pulses δi(t),i = S,M on the
systems with ε1 = 1 and x1(0) = y1(0) = 0.

second negative impulse δM (τ ). The response system restores
its original position of coincidence with the driver (blue) along
the red line (red arrows) when an impulse (green) of size,
δS(τ ) − δM (τ ) is applied. In the meantime, the driver makes
an away movement along the magenta line (magenta arrows)
when δM (τ ) is applied; however, it retrieves its position after a
short transient. Alternatively, by applying the second impulse
as a positive δM (τ ) to the driver, the behavior of both the
systems becomes completely different: instead of increasing
the distance between the driver and the response systems, the
positive impulse δM (τ ) leads them to CS and thereby restores
their original positions from where they started initially (see
Fig. 6).

III. EXCHANGE OF LEADERSHIP

As suggested above, the response system can desynchronize
and later comes back to rejoin the chorus even after facing
external impulses. If we look closely into the details of
Fig. 5(a), the leader-follower relation seems to be exchange-
able. To understand the meaning of this property of exchanging
leader-follower role, let us focus on the time interval δM (τ ) [see
Fig. 7(a)] or the interval of time between the ends of δS(τ ) and
δM (τ ) [see Fig. 7(b)], namely, τ2. Due to the impulse δM (τ ),
both systems are desynchronized during the interval of δM (τ ),
and the length of travel done by the driver is always greater
than that of the response system. Second, if we concentrate
particularly on Fig. 7(a), we see at the end of the impulse
δM (τ ) that the response system which is weakly affected by the
second impulse δM (τ ), seems to have arrived at its permanent
position while the driver system is still changing its position
[see the break of x1(τ ) at the end of δM (τ )]. These distinct
behaviors between the drive and response systems produce
a particular global effect, which is an apparent exchange of
leadership: for a short instant of time, the driver seems to
become the follower and the response acts as the leader.

This apparent behavior is more pronounced when δM is
positive. To clarify the relative motion between the driver and
the response systems described in Fig. 6, we show their attrac-
tors in Fig. 8. The violet line presents the desynchronization
track of the response attractor (otherwise red line) along the
direction of the violet arrows with the application of δS(τ ).
The green track with blue arrows indicates the path along
which the driver jumps in the duration of δM (τ ) while the
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FIG. 7. Exchange of leadership between the master and slave
within the τ2 zone, for ε1 = −1 and x1(0) = y1(0) = 0. Within the
interval of time of application of δM (τ ) [see panel (a)] or the interval
of time between the ends of δS(τ ) and that of δM (τ ) [see panel (b)],
the distance covered by the driver, distX , and the response, distY ,
in the τ2 zone are quite different and distY < distX [in panel (a)],
distX ≈ 508.91 and distY ≈ 443.82 while in panel (b) distX ≈ 522.12
and distY ≈ 432.50.

black track shows how the slave responds to δM (τ ). The red
arrows indicate the return path of the slave along the black
track. Both the master and the slave meet at the end of the
black return track of the response. The apparent exchange
of leadership clearly appears in the return to synchronization
domain where the driver (blue line) adjusts its trajectory to
completely synchronize with the response (represented by the
red dotted lines).
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FIG. 9. Response and driver restore synchronization after re-
sponse sends a short impulse to the leader. Here, the apparent
exchange of leadership appears to an observer immediately after
the driver jumps to synchronize with the response. Then leader and
response move on together in a coherent synchronized way. After
the feedback impulse, the driver simply restores its behavior and
continues to command synchronization.

We now show the effect of mutual exchange of information
between the response and the driver as illustrated in Fig. 9.
An impulse (green line) is applied to the response system
(red line), which then moves away from the driver (blue line)
and departs from their initial position of coincidence for our
choice of initial conditions. A feedback from the response
system as a small duration pulse (dashed magenta) is then sent,
after a while, to the driver, δf = C0[y1(τ ) − x1(τ )] during a
time interval [τ1,τ1(1 + μf )]. For a suitable value of coupling
constant C0 and the duration μf , the driver receives a kick and
completely synchronizes with the response when their distance
becomes zero. Since the response system remains unperturbed,
the dynamics of the driver is only given here after a feedback
pulse from the response is applied,

ẋ1 = I (x2) + δf (τ ), ẋ2 = α[−x3 + I (x2)],

ẋ3 = β(−x1 + x2 − γ x3), (13)

where

δf (τ =
{
C0(y1(τ ) − x1(τ )), if τ1 � t � τ2,

0, otherwise, (14)

and τ1 = 6720.54, τ2 = 6726.6. Figure 9 shows that the
master-slave system regains its original position of coincidence
after the short duration feedback signal (dashed-magenta line)
is sent to the driver by the response. This tells us that if a
response system moves away from the driver by the impact of
an external impulse or interceptor, it can send a message in
the form of a small duration signal to the driver that suffices
to restore their original distance. We can make an analogy of
this event with two birds moving in a leader-follower coherent
motion. When the follower encounters an obstacle, it moves
away from the leader but restores their original positions by
sending a feedback message to the leader.

IV. CONCLUSIONS

The cohesive motion of living and dynamics objects
attracted the attention of physicists in the recent past. Some
studies were proposed to understand the mechanism of
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such collective motion using both statistical mechanical and
dynamical system approaches. To understand the coherent
motion of dynamical objects, we propose an interesting toy
model of coupled jerk systems in a leader-follower interaction
mode where the follower is able to mimic the decision-making
process of the driver by copying the nonlinear function of the
driver and to send a feedback signal to the leader whenever it
is necessary. Using two such dynamical systems, we showed
how the trajectories of two dynamical units remain coherent
but maintain a safe distance. In the dynamical systems’
conventional terms, we called it a special case of GS, which
we established both analytically and numerically. The most
interesting part of our study was revealed by numerical
studies when we found how the response and driver systems
reacted to external impulses such as predators and how they
avoided the situation by moving away and then coming back
to readjust their original distance. The leader-follower role
or the master-slave relation was found exchangeable when
necessary similar to movements in a flock of birds. We
found that the phenomenon is not system specific restricted
to these jerk systems only, but generic. We investigated other
examples [23–26], the paradigmatic Rössler system, a coupled
tunnel diode model, and a Josephson junction–based jerk
model. In all of them, we observed coherent motion, but
the exchange of leadership appears only for the Josephson
junction–based jerk model, apart from the one described in
this manuscript (details can be seen in the Appendices A, B,
and C). We determine that the expression of the error dynamics
should always have at least one time derivative equal to zero
and no nonlinear term for these phenomena to be true. That is
why the nonlinearities in the drive and the response systems
are the same. We plan to extend our results to a large number of
such dynamical units which surprisingly mimic the movement
of flocking birds, not presented here. We need more rigorous
studies before presenting them in the future.
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APPENDIX A: RÖSSLER SYSTEMS

As we mentioned in the Introduction, the response system
moves away from the driver and after a short while they
start moving in a synchronized state and maintain a constant
distance of separation. Eventually, they can restore their
original position when a negative pulse is applied or an
appropriate feedback pulse is sent to the driver. This coherent
dynamics is not restricted to the jerk system only; here we
show that this effect appears also in the Rössler and tunnel
diodes systems, when we appropriately copy the nonlinearity
of the driver into the response system, such that two variables
become identical in the driver and response systems, and an
appropriately defined Lyapunov function remains bounded in
time by a positive constant as shown above for the jerk System.
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x1(τ ) y1(τ ) δS(τ ) δM(τ )

FIG. 10. Rössler systems showing coherent behavior for the
initial conditions (0.3,0.0, − 1.0) for the driver Eq. (A1) and
(−0.3,0.0,0.1) for the response Eq. (A2).

We define the master and follower Rössler systems as given,
respectively, by Eqs. (A1) and (A2):

ẋ1 = −x2 − x3, (A1a)

ẋ2 = x1 + ax2 + δM (τ ), (A1b)

ẋ3 = bx1 + x1x3 − cx3, (A1c)

ẏ1 = −y2 − y3, (A2a)

ẏ2 = x1 + ax2 + δS(τ ), (A2b)

ẏ3 = by1 + x1x3 − cy3, (A2c)

with the following parameters: a = 0.36, b = 0.4, and c =
4.5. The results are shown in Fig. 10. The response system (red
line) moves away from the driver (blue line) by the impact of
a impulse (green) on it, however, rejoins the driver when an
impulse (magenta) is applied to the driver at a later instant of
time.

APPENDIX B: TUNNEL DIODE SYSTEMS

We show the similar coherent motion in a tunnel diode
system [23] as shown in Fig. 11. The master and response

4000 4100 4200 4300 4400 4500 4600
τ

0.0

0.2

0.4

0.6

x1(τ )

y1(τ )

δS(τ )

δM(τ )

FIG. 11. Tunnel diode based chaotic systems showing coherent
behavior for the initial conditions (0.0,0.27,0.008) for the driver
Eq. (B1) and (0.0,0.1,0.1) for the response Eq. (B2).
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FIG. 12. Josephson junction–based chaotic jerk systems showing
coherent behavior for the initial conditions (0.0,0.4,0.0) for the driver
Eq. (C1) and (0.0, − 1.0,1.0) for the response Eq. (C2). As in Fig. 6,
the exchange of leadership is shown by the fact that the driver (blue
solid line) is the one that jumps to synchronize with the response
system (red solid line) because of the injection of the impulse δm(τ )
(violet solid line).

system are

ẋ1 = α(x2 − x1 − rfn(x1)) + δM (τ ), (B1a)

ẋ2 = β(x1 − x2 + rx3), (B1b)

ẋ3 = γ (E − x2), (B1c)

ẏ1 = α(x2 − x1 − rfn(x1)) + δS(τ ), (B2a)

ẏ2 = β(y1 − y2 + ry3), (B2b)

ẏ3 = γ (E − y2), (B2c)

where fn(x1) = a1(x1 − b)3 − a2(x1 − b) + a3. For a1 =
1.3242872, a2 = 0.06922314, a3 = 0.00539, b = 0.167, α =
2.457222, β = 0.277778, γ = 0.225, r = 16, and E =
0.253208 for the driver and the response systems, respectively,
both systems are chaotic. The results are shown in Fig. 11.

APPENDIX C: JOSEPHSON JUNCTION–BASED
JERK SYSTEM

We studied the coherent motion in several well-known jerk
systems in Refs. [24–26]; however, we restricted ourselves to
the Josephson junction–based jerk system studied in Ref. [26],

−20 −15 −10 −5 0
log10 μ

0

100

200

300

400

500

d
1

FIG. 13. Separating distance of the drive-response attractors
against the width μ of the external pulse for x1(0) = 9 and y1(0) = 0
showing similar result as in Fig. 3(a)

simply because it also presents the exchange of leadership as
shown in Fig. 6. The master and response systems are

ẋ1 = x2 + δM (τ ), (C1a)

ẋ2 = x3, (C1b)

ẋ3 = −ax2 − ax3 + a sin(2πbx1), (C1c)

ẏ1 = x2 + δs(τ ), (C2a)

ẏ2 = y3, (C2b)

ẏ3 = −ay2 − ay3 + a sin(2πbx1), (C2c)

where a = 0.3 and b = 0.25. For the initial conditions
(0.0,0.4,0.0) and (0.0, − 1.0,1.0), respectively, for the driver
and response systems, we obtain the time series shown in
Fig. 12. Both the coherent motion between both systems as
well as the apparent exchange of leadership when the impulse
δM is injected, are clearly seen.

In Fig. 13 we present the separating distance between
the drive and response attractors versus the width μ of the
external pulse for a selected value of x1(0) and y1(0) = 0 to
show that its particular behavior discussed in Fig. 3 is not
restricted to just the systems gave in Eqs. (1) and (2). We
found similar results for all the systems presented here in
the appendices. In the case of this Josephson junction–based
jerk system, we fixed (9.0, − 0.6, − 1.0) and (0.0,0.6,0.1)
the initial conditions for the driver and the response systems,
respectively.
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Grigera, A. Jelić, S. Melillo, L. Parisi, O. Pohl, and E. Shen,
and M. Viale, Nat. Phys. 10, 691 (2014).

042210-8

https://doi.org/10.1038/nature04275
https://doi.org/10.1038/nature04275
https://doi.org/10.1038/nature04275
https://doi.org/10.1038/nature04275
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1103/PhysRevLett.64.821
https://doi.org/10.1103/PhysRevLett.64.821
https://doi.org/10.1103/PhysRevLett.64.821
https://doi.org/10.1103/PhysRevLett.64.821
https://doi.org/10.1063/1.4944530
https://doi.org/10.1063/1.4944530
https://doi.org/10.1063/1.4944530
https://doi.org/10.1063/1.4944530
https://doi.org/10.1103/PhysRevE.59.4036
https://doi.org/10.1103/PhysRevE.59.4036
https://doi.org/10.1103/PhysRevE.59.4036
https://doi.org/10.1103/PhysRevE.59.4036
https://doi.org/10.1088/1367-2630/14/10/105023
https://doi.org/10.1088/1367-2630/14/10/105023
https://doi.org/10.1088/1367-2630/14/10/105023
https://doi.org/10.1088/1367-2630/14/10/105023
https://doi.org/10.1126/science.252.5009.1177
https://doi.org/10.1126/science.252.5009.1177
https://doi.org/10.1126/science.252.5009.1177
https://doi.org/10.1126/science.252.5009.1177
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1038/nphys3035
https://doi.org/10.1038/nphys3035
https://doi.org/10.1038/nphys3035
https://doi.org/10.1038/nphys3035


COHERENT MOTION OF CHAOTIC ATTRACTORS PHYSICAL REVIEW E 96, 042210 (2017)

[12] W. Bialek, A. Cavagna, I. Giardinab, T. Morad, E. Silvestri, M.
Vialeb, and A. M. Walczake, Proc. Natl. Acad. Sci. USA 109,
4786 (2012).

[13] A. Cavagna, L. D. Castello, I. Giardina, T. Grigera, A. Jelic, S.
Melillo, T. Mora, L. Parisi, E. Silvestri, M. Viale, and A. M.
Walczak, J. Stat. Phys. 158, 601 (2015).

[14] T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71 (2012); K.
Ozogány and T. Vicsek, J. Stat. Phys. 158, 628 (2015) and
refs. therein.

[15] O. Petit and R. Bon, Behav. Process 84, 635 (2010).
[16] M. Nagy, Z. Ákos, D. Biro, and T. Vicsek, Nature (London) 464,

890 (2010).
[17] H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys.

Rev. E 53, 4528 (1996).
[18] E. Padmanaban, C. R. Hens, and S. K. Dana, Chaos 21, 013110

(2011); M. Vigneshwaran, S. K. Dana, and E. Padmanaban,
Euro. Phys. Lett. 116, 50010 (2016); P. K. Roy, C. Hens, I.

Grosu, and S. K. Dana, Chaos 21, 013106 (2011) and refs.
therein.

[19] R. Tchitnga, Tekou Nguazon, P. H. Louodop Fotso, and J. A.
C. Gallas, IEEE Trans. Circ. Syst-II: Express Briefs 63, 239
(2016).

[20] F. M. M. Kakmeni, S. Bowong, D. V. Senthilkumar, and J.
Kurths, Chaos 20, 043121 (2010).

[21] M. Sekieta and T. Kapitaniak, Int. J. Bifur. Chaos 6, 1901 (1996).
[22] R. Femat and G. Solís-Perales, Phys. Rev. E 65, 036226 (2002).
[23] P. Louodop, H. Fotsin, M. Kountchou, Elie B. Megam

Ngouonkadi, H. A. Cerdeira and S. Bowong, Phys. Rev. E 89,
032921 (2014).

[24] J. C. Sprott, IEEE Trans. Circuits Systems II: Express Briefs
58(4), 240 (2011).

[25] K. Sun and J. C. Sprott, Int. J. Nonlin. Sci. Numer. Simul. 10,
1443 (2009).

[26] M. E. Yalcin, Chaos, Solitons Fractals 34, 1659 (2007).

042210-9

https://doi.org/10.1073/pnas.1118633109
https://doi.org/10.1073/pnas.1118633109
https://doi.org/10.1073/pnas.1118633109
https://doi.org/10.1073/pnas.1118633109
https://doi.org/10.1007/s10955-014-1119-3
https://doi.org/10.1007/s10955-014-1119-3
https://doi.org/10.1007/s10955-014-1119-3
https://doi.org/10.1007/s10955-014-1119-3
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1007/s10955-014-1131-7
https://doi.org/10.1007/s10955-014-1131-7
https://doi.org/10.1007/s10955-014-1131-7
https://doi.org/10.1007/s10955-014-1131-7
https://doi.org/10.1016/j.beproc.2010.04.009
https://doi.org/10.1016/j.beproc.2010.04.009
https://doi.org/10.1016/j.beproc.2010.04.009
https://doi.org/10.1016/j.beproc.2010.04.009
https://doi.org/10.1038/nature08891
https://doi.org/10.1038/nature08891
https://doi.org/10.1038/nature08891
https://doi.org/10.1038/nature08891
https://doi.org/10.1103/PhysRevE.53.4528
https://doi.org/10.1103/PhysRevE.53.4528
https://doi.org/10.1103/PhysRevE.53.4528
https://doi.org/10.1103/PhysRevE.53.4528
https://doi.org/10.1063/1.3548066
https://doi.org/10.1063/1.3548066
https://doi.org/10.1063/1.3548066
https://doi.org/10.1063/1.3548066
https://doi.org/10.1209/0295-5075/116/50010
https://doi.org/10.1209/0295-5075/116/50010
https://doi.org/10.1209/0295-5075/116/50010
https://doi.org/10.1209/0295-5075/116/50010
https://doi.org/10.1063/1.3539802
https://doi.org/10.1063/1.3539802
https://doi.org/10.1063/1.3539802
https://doi.org/10.1063/1.3539802
https://doi.org/10.1109/TCSII.2015.2483218
https://doi.org/10.1109/TCSII.2015.2483218
https://doi.org/10.1109/TCSII.2015.2483218
https://doi.org/10.1109/TCSII.2015.2483218
https://doi.org/10.1063/1.3515840
https://doi.org/10.1063/1.3515840
https://doi.org/10.1063/1.3515840
https://doi.org/10.1063/1.3515840
https://doi.org/10.1142/S0218127496001235
https://doi.org/10.1142/S0218127496001235
https://doi.org/10.1142/S0218127496001235
https://doi.org/10.1142/S0218127496001235
https://doi.org/10.1103/PhysRevE.65.036226
https://doi.org/10.1103/PhysRevE.65.036226
https://doi.org/10.1103/PhysRevE.65.036226
https://doi.org/10.1103/PhysRevE.65.036226
https://doi.org/10.1103/PhysRevE.89.032921
https://doi.org/10.1103/PhysRevE.89.032921
https://doi.org/10.1103/PhysRevE.89.032921
https://doi.org/10.1103/PhysRevE.89.032921
https://doi.org/10.1109/TCSII.2011.2124490
https://doi.org/10.1109/TCSII.2011.2124490
https://doi.org/10.1109/TCSII.2011.2124490
https://doi.org/10.1109/TCSII.2011.2124490
https://doi.org/10.1109/TCSII.2011.2124490
https://doi.org/10.1515/IJNSNS.2009.10.11-12.1443
https://doi.org/10.1515/IJNSNS.2009.10.11-12.1443
https://doi.org/10.1515/IJNSNS.2009.10.11-12.1443
https://doi.org/10.1515/IJNSNS.2009.10.11-12.1443
https://doi.org/10.1016/j.chaos.2006.04.058
https://doi.org/10.1016/j.chaos.2006.04.058
https://doi.org/10.1016/j.chaos.2006.04.058
https://doi.org/10.1016/j.chaos.2006.04.058



