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An array of excitable Josephson junctions under a global mean-field interaction and a common periodic forcing
shows the emergence of two important classes of coherent dynamics, librational and rotational motion, in the
weaker and stronger coupling limits, respectively, with transitions to chimeralike states and clustered states in
the intermediate coupling range. In this numerical study, we use the Kuramoto complex order parameter and
introduce two measures, a libration index and a clustering index, to characterize the dynamical regimes and their
transitions and locate them in a parameter plane.
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A surprising new phenomenon was reported in the last
decade, namely, the chimera states [1–8] that emerge via
a symmetry breaking of a homogeneous synchronous state
in a large population of nonlocally coupled identical phase
oscillators into two coexisting spatially extended coherent
and noncoherent subpopulations. Presently, the existence of
chimera states has been reported in identical limit cycle
oscillators [8,9], chaotic systems [9–13], and very recently
in excitable systems in the presence of noise [14]. It drew
special attention after a similar behavior was noticed in the
brain of some sleeping animals [15]. It has been now con-
firmed in laboratory experiments [16–18]. Most surprisingly,
chimeralike states were observed in globally coupled networks
of identical oscillators [19–23], which was unexpected because
of the presence of a perfect symmetry in such a network. The
reason for the symmetry breaking of a homogeneous state
into coexisting coherent and nocoherent states still remains a
puzzle.

In the meantime, more reports are coming on chimera states
in many interesting systems, such as a network of neurons
under different coupling forms [24], a Josephson junction array
[25], and chemical oscillators [26] under nonlocal coupling,
which are of practical interest. In particular, the Josephson
junction, besides its main appeal as a superconducting device,
shows a rich variety of dynamics, such as excitability, bista-
bility [27–29], and neuronlike spiking and bursting [29–32],
that are of common interest in other areas of nonlinear science.
In fact, in the past, synchronization as a symmetry preserving
phenomenon in a globally coupled Josephson junction array
[33–36] was studied from the fundamental viewpoint of
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collective behaviors of oscillatory systems. It is now of
general interest if symmetry breaking chimera states emerge
in globally coupled Josephson junction arrays, too.

In this Rapid Communication, we report on the search for
chimera states in a Josephson junction array under global
mean-field interactions, and if they do exist, under what
conditions do they occur? The existence of a state of order
and turbulence was reported earlier [36] in a forced Josephson
junction array under a global mean-field influence, which
showed signatures of chimera states, however, no categorical
statement was made at that time. We revisit that parameter
space of the Josephson junction array under the same condition
and confirm the existence of chimeralike states. In the process,
we notice two important classes of coherent states, one
regular librational motion and a regular rotational motion
in the array, which are typical dynamical features [28] of
a single Josephson junction. In cylindrical space [37], the
trajectory of a junction is localized during a libration while it
encircles the cylinder during a rotational motion (Fig. 4). Most
importantly, we observe a transition between the two coherent
states for changing coupling interactions. When increasing
the coupling strength from a weaker range, the coherent
librational motion emerges above a threshold and continues
for a range of coupling, then transits to coherent rotational
motion for large coupling via successive chimeralike states
and clustered states in an intermediate coupling range. In
the chimeralike states, we notice the coexistence of regular
librational motion in a coherent subpopulation and chaotic
rotational motion in another noncoherent subpopulation. In
the clustered state, regular libration coexists with rotational
motion in two subpopulations.

We consider an array of identical Josephson junctions when
each node of the network is driven by a radio-frequency (rf)
signal. We choose the global mean-field interaction for the
network and identical parameters as α = 0.2 and I = 0.021 for
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all the junctions when an isolated junction remains in a stable
steady state [29]. The set of parameters is chosen to be almost
identical to what was considered earlier [36], for a revision of
the past result in the search for chimera states. The rf forcing
has an identical amplitude Irf = 0.595 and frequency �rf =
0.8 for all the nodes that make them oscillate periodically.

The dynamics of the ith node of the rf-forced junction array
is described as

φ̇i = yi, (1)

ẏi = I − sin φi − αyi + Irf sin(�rft) + KαY, (2)

where Y = 1
N

∑N
j=1 yj is the mean-field value of voltage φ̇i =

yi across all the junctions, α = [h/2πeIR2C]1/2 = ( 1
β

)
1
2 is the

damping parameter, β is the McCumber parameter, and I is
the normalized constant bias current. K defines the strength of
the mean-field interaction between the junctions. Increasing
K reveals various network dynamics and collective states, and
two coherent states, chimeralike and cluster states.

To distinguish the emergent states and their dynamics,
we use the complex Kuramoto order parameter (r) [38] and
introduce two measures, a clustering index (s) and a libration
index (l). The complex Kuramoto order parameter r is

rei� = 1

N

N∑

j=1

eiφj , (3)

where φj is the instantaneous phase of each junction j . When
all the oscillators are coherent, r = 1, and in an incoherent
state, r = 0, while 0 < r < 1 implies partial synchronization
or clustering. The chimera states belong to a class of partial
synchronization.

Since the order parameter r cannot distinguish the chimera
states from the cluster states for intermediate values of 0 <

r < 1, we introduce a clustering index s,

s = max(n)

N
u, (4)

where u = 1 − �(δ1 − d), d = max(n) − 〈n〉, �(·) is the
Heaviside step function, δ1 is an arbitrary small number, n(t)
is the number of distinct states counted (using a standard
numerical routine) at every instant of time t in the time
evolution of the network, and 〈n〉 denotes the average in a
long run. The max(n) is the largest possible value of n. A
clustered state (single or multiple) is now clearly distinguished
by s = 0. It excludes a cluster state when 0 < s < 1 but detects
the existence of chimeralike states if 0 < r < 1.

Next, the libration index l is introduced basically to
characterize the dynamical features of the junctions in different
collective states,

l = 1

N

N∑

j=1

�j, (5)

with �j = �(δ2 − mj ), where δ2 is another arbitrarily chosen
small threshold, �(·) is defined above, and mj is

mj = 1 − 0.5[max{cos[φj (t)]} − min{cos[φj (t)]}]. (6)

FIG. 1. Different dynamical states in K − Irf space for α =
0.2, I = 0.021, and �rf = 0.8. Yellow and green regions represent
coherent librational and coherent rotational motion, respectively, and
blue and red regions denote cluster and chimera states, respectively.
Black dots (upper corner) represent desynchronized states. We
perform our numerical study in Fig. 2 along the horizontal dashed
line, Irf = 0.595.

To determine mj for the j th oscillator, we calculate cos[φj (t)]
for all instants of time, which vary from 0 to 2π for rotational
motion when mj = 0. In libration, since the trajectory of
an oscillator never crosses the φ = π line, mj is a positive
number. Finally, it determines l = 0 for oscillators in libration
and l = 1 when they are in rotational motion. A value
of 0 < l < 1 indicates the coexistence of librational and
rotational motion in subpopulations of the junctions; see the
Supplemental Material (SM) for details [39].

Figure 1 shows distinct dynamical regimes in the K − Irf

space where each point is plotted in color using a combination
of all three of the above measures. The regions of coherent
libration and coherent rotation are denoted by yellow and
green colors, respectively. The red color represents chimeralike
states where coherent oscillators are in libration and incoherent
oscillators in rotational motion. The cluster state is depicted
by the blue color where a mixed population with libration and
rotation exists. Black dots represent desynchronized states.
A region of messy colors is seen on the top right corner
where cluster and chimera states and even coherent states
coexist, which is not the focus of our current interest. As a
specific example, we vary K along the horizontal dashed line
(Irf = 0.595) shown in Fig. 1, and follow a transition from a
coherent librational state to another coherent rotational state
through the intermediate chimeralike and cluster states, as
mentioned above.

Before describing further the collective dynamics, we
reduce the coupled Eqs. (1) and (2) to their averaged equations
(equivalent to the motion of the center of mass of our system),

Ẋ = Y, (7)

Ẏ = I − 1

N

N∑

j=1

sin φj − (1 − K)αY + Irf sin(�rft), (8)

where X = 1
N

∑N
j=1 φj and Y = 1

N

∑N
j=1 yj define the

mean phase and mean voltage of the junction array. We
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FIG. 2. Plots of r (dashed line), l (red line), and s (blue/light
grey line) with coupling strength K in (a). A bifurcation plot of Ymax

against K in (b). α = 0.2, I = 0.021, �rf = 0.8, Irf = 0.595.

simultaneously simulate the averaged equations and the
original coupled equations. The average of 〈sin φi〉 is simulated
from the original coupled equations and substituted into the
averaged equation.

Figure 2(a) plots r (dashed line), s (blue/light gray line),
and l (red line) for varying K in a range of 0.3–0.58. As we
increase K , r becomes 1 and s = 0 (i.e., coherent state or
single clustered state) above a threshold (not shown here) and
continues for a range of coupling until r starts decreasing at
a critical value, K = 0.451, when Y becomes chaotic. In the
latter range of K values, both r and s fluctuate, 0 < r < 1
and 0 < s < 1, where chimeralike states emerge as a partial
synchronization state. For a further increase of K above
another critical value, K = 0.512, r starts fluctuating between
1 and intermediate values 0 < r < 1 intermittently in small
windows of K , which signifies a switching between single
and multicluster states for small changes of K values until it
reaches K = 0.532. However, s = 0 all along for K > 0.512
confirms the presence of single or multicluster states. In fact, a
single cluster or a coherent state emerges at K = 0.532 when
r = 1 (s = 0). The chimeralike states emerge only in the range
of K = 0.451–0.512, where r shows a decreasing trend and
s shows a reverse trend except in the clustered states (small
windows of single clusters and multicluster states).

Figure 2(b) presents a bifurcation diagram of Ymax with K . It
reveals that the collective dynamics in the left coherent region
(cf. upper panel) bifurcates from a single period to period-2 and
larger periods, and is followed by chaos in the chimera region.
In this chimera region, the Ymax plot indicates chaotic behavior
where the average Y was taken on two subpopulations, one in
coherent periodic motion and another in noncoherent chaotic
motion. A small window of multiclustered states (period-3)
exists immediately after the chimera region, followed by single
cluster higher periodic rotational orbits (period-6) on the right
(lower panel), that again bifurcates via period doubling to
chaos, however, remaining in a coherent rotational state. Note
that r , s, and l do not fluctuate here, which distinguishes it
from the chaotic chimera states.

FIG. 3. (a) Snapshot of phases of all junctions in a polar plot,
and (b) their spatiotemporal dynamics confirming chimeralike states
(K = 0.49). Red circles and the black line represent incoherent and
coherent subpopulations, respectively, in (a).

FIG. 4. r-� plot (left column) and phase portrait (y vs φ) in
cylindrical space (right column). (a), (b) Coherent libration for K =
0.305, (c), (d) chimeralike states for K = 0.49, (e), (f) cluster states
of coexisting libration and rotational motion for K = 0.523, and (g),
(h) coherent rotational motion for K = 0.56.
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For a demonstration of the chimeralike states, we present
(K = 0.49) a snapshot of phases of all the junctions in a polar
plane in Fig. 3(a). The incoherent subpopulation is clear from
the distribution of phases of individual junctions (red circles)
and the coherent junctions are aligned along the black line.
The spatiotemporal dynamics of the voltage variable (y) of all
the junctions is plotted in Fig. 3(b) for a long run that further
confirms the existence of chimeralike states, the coexisting
coherent and incoherent subpopulations.

Figure 4 describes the dynamical characters in different
collective states (two coherent states, the clustered state and
chimeralike states) of the junctions in r-� plots (left column)
and their phase portraits in cylindrical space (right column).
In the lower range of K < 0.451 (cf. Fig. 2), the coherent or
single cluster dynamics of the junctions is librational (l = 0,
s = 0) when the r-� plot in Fig. 4(a) shows an incomplete
rotation (blue line, r = 1), and it is confirmed by its trajectory
(green line) in a cylindrical space in Fig. 4(b). In contrast, the
coherent or single cluster dynamics of the junctions at the other
end (cf. Fig. 2) for larger K > 0.532 is complete rotational
(l = 1, s = 0), as shown in the r-� plot (blue/light gray line,
r = 1) and its trajectory (green line) in cylindrical space in
Figs. 4(g) and 4(h), respectively. In the intermediate range,
0.451 < K < 0.512, l fluctuates (0 < l < 1) and almost ex-
actly follows the r fluctuation (0 < r < 1), where r shows
a decreasing trend (Fig. 2) and we observe the chimeralike
states. In the chimeralike states, the coherent subpopulation is
in librational motion (blue/light gray line, r ≈ 0.6 < 1) and
the incoherent subpopulation (red lines) coexists in rotational
motion (red line, r < 1; around 0.2), as shown in the r-� plot
in Fig. 4(c). In cylindrical space in Fig. 4(d), the trajectories of
the coherent subpopulation (black line) confirm their regular
librational motion and the incoherent (red lines) counterpart in
chaotic rotational motion. In the range of K = 0.512–0.532, as

mentioned earlier, the clustered states (cf. s = 0 in Fig. 2) are
seen where both the r-� plot and the trajectory in cylindrical
space in Figs. 4(e) and 4(f), respectively, confirm the existence
of coexisting subpopulations in regular rotational (r = 0.34)
and regular librational motion (r = 0.66). Initial conditions
are given in [40].

In summary, we revisited an earlier study [36] on the
collective dynamics of a globally coupled Josephson junction
array under a common rf forcing where order and turbulent
states were reported to coexist, although no categorical
statement about the existence of chimeralike states was made.
Our present numerical study confirmed that chimeralike states
indeed existed there. Furthermore, we explored two important
classes of coherent states, a librational motion and a rotational
motion, and an interesting process of transition from one to
the other via the successive emergence of chimeralike states
and cluster states when the coupling strength was increased.
This phenomenon of nontrivial transition was not limited
to a particular set of parameters used earlier, but existed in
a broader parameter range (a second example is presented
in the Supplemental Material [39]). A variety of dynamics,
libration and rotational motion, in the junction array and their
collective states, was identified, in parameter space, using
the Kuramoto order parameter (r) and by introducing two
measures, a librational index (l) and a clustering index (s),
which were illustrated in a cylindrical space.
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Phys. Rev. Lett. 110, 224101 (2013).

[7] J. H. Sheeba, V. K. Chandrasekar, and M. Lakshmanan, Phys.
Rev. E 79, 055203 (2009); 81, 046203 (2010).

[8] G. C. Sethia, A. Sen, and G. L. Johnston, Phys. Rev. E 88,
042917 (2013).

[9] C. Gu, G. St-Yves, and J. Davidsen, Phys. Rev. Lett. 111, 134101
(2013).

[10] A. Zakharova, M. Kapeller, and E. Schöll, Phys. Rev. Lett. 112,
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