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Abstract. In this work, we propose changes in the structure of a neu-
ronal network with the intention to provoke strong synchronization
to simulate episodes of epileptic seizure. Starting with a network of
Izhikevich neurons we slowly increase the number of connections in se-
lected nodes in a controlled way, to produce (or not) hubs. We study
how these structures alter the synchronization on the spike firings in-
terval, on individual neurons as well as on mean values, as a function
of the concentration of connections for random and non-random (hubs)
distribution. We also analyze how the post-ictal signal varies for the
different distributions. We conclude that a network with hubs is more
appropriate to represent an epileptic state.

1 Introduction

Anomalies in the connectome, the set of all neurons and brain connections, are present
in patients with neurological disorders which affect a large number of subjects world-
wide [1]. For example, reduced frontal hub connectivity was reported in patients with
schizophrenia [2,3], abnormal modular connectivity was identified in children with
autism [4], network hubs also plays an important role in the network from patients
with Alzheimer’s disease [5–7] and epilepsy [8].
Despite these findings of abnormal network patterns in patients with brain dys-

functions, the way which connectome modulates the brain function, and consequently,
the impact of an anomalous network topology in the brain dynamics, is still poorly
understood. Theoretical results reveal the influence of the network on dynamical
processes [9], such as the importance of the node degree on cascading behaviors [10],
the role of the links to opinion spreading in social graphs [11] and the degree distrib-
ution effect in percolation phenomena [12].
In this work, we investigate the effect of the network topology in a remarkable

emergent property of the brain dynamics: the synchronization. Synchronized activity
occurs during healthy brain states such as sleep but also in unhealthy states, like
during epileptic seizures [13]. In an episode of seizure (also called ictal period), the
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brain activity is highly synchronized (hyper-synchronism), showing a very similar
eletrophisiological pattern between almost all cortical regions.
Some well documented patterns found in functional networks during seizures are

the presence of hubs, the strenghtening of the coupling between brain signals, con-
cave like evolution of the clustering coefficient and characteristic path length along
time [14]. An interesting question is how these patterns are related with the hyper-
synchronization found during the ictal period. Has the network topology a causal
effect over the synchronization? How is the interrelation of structure with the dy-
namics of propagation and the ending of the seizure?
In order to investigate the role of the networks over the hypersynchronization fea-

ture of the seizure,we simulated a neuronal network with hubs, a topology that has
been shown in [15] to appear during the ictal period. Some analytical and simulation
studies point to a dependence between synchronizability of a network and the pres-
ence of highly connected nodes [16–18], while other works points towards the opposite
direction [19].
Moreover, as these epileptic networks show a time dependent topology, with two

clearly distincts states of ictal and non-ictal activity, we analyzed the influence of
the ictal network to the post-ictal signal, when the healthy functional structure is
restored. In this way, we can observe how a topological configuration can affect the
signal’s properties.
These results can be valuable to a new interpretation of this time-varying brain

topology but also for artificial systems where synchronization is an important feature,
as computer networks or brain inspired models.

2 Materials and methods

Our simulations employ the Izhikevich neuron model, known for its simplicity and
efficiency in modelling neurons and for simulating a great range of signals emitted by
real neurons. It is described by the following equations:

dv

dt
= 0.04v2 + 5v + 140− u+ I (1)

du

dt
= a(bv − u),

with the after-spike resetting rule in the case of v ≥ 30 mV:
v ← c (2)

u ← u+ d,
where v is the membrane potential, u is the membrane recovery rate and I represents
the input from the thalamus. The set of parameters a, b, c and d are the same as
in Ref. [20]. Our simulations were integrated using the Euler method with a step
of 0.05. All networks were created with 1000 neurons with the excitatory-inhibitory
ratio fixed in 4:1, the connections are weighted and directed. The network starts with
30% of the total links initialized, more connections are added in random nodes to
simulate the presence of hubs.
These connections were added gradually, governed by two parameters: the percent-

age of nodes that will receive more connections and will became hubs (hub ratio, HR)
and the percentage of connections added per node which in all simulations was fixed
at 70%. For example, hubs ratio of 0.1 means that 10% of the total number of nodes
will be linked with 70% of others nodes. To compare the effect, the same amount of
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connections added to create the network with hubs is added in a random fashion in
another network and the behaviour of spiking of both networks were recorded, using
the same random parameters of the neurons in both.
The simulations were analyzed considering the discrete events of the firing of each

neuron along time and the sum of potential from each neuron, creating a local field
potential (LFP) for the entire network. Considering only the firings we measured the
synchrony employing the spike distance (SD) method [21], which is inversely propor-
tional to the level of synchronism among them.
We employed two measures to characterize the LFP: the Lempel-Ziv complexity

CLZ and the Hurst exponent H. While the Lyapunov exponent measures the intensity
of chaotic behavior determination, the complexity gives a probable interpretation for
a biased-random degree. In some cases the Lempel-Ziv approach may be an efficient
alternative to analyze dynamical behaviors in time series. Also, the method does not
require embedding and the series can be interpreted as a binary signal generated by
a source. More details and examples see [22].
The Hurst exponent is a measure of long term memory (similar to autocorrelation)

and fractality [23]. If the exponent H > 0.5, the time series is called persistent, as
an increase in the present is probably followed by a later increase, whereas H < 0.5
indicates an antipersistent regime i.e. an increase in the present are more likely to
be followed by a lower value [24]. We employed this measure to characterize the LFP
after the removal of network hubs, in a way to see the impact os such structure in
the signal.

3 Results and discussion

In this section we propose a model, and the corresponding simulations, in which by
modifying the topology of the network in two different ways: increasing the connec-
tivity in a random way and increasing it in a controlled way, augmenting the number
of hubs, we obtain the following: the spike activity of a single neuron is more reg-
ular by increasing the number of hubs; the complexity of the signal decreases with
the number of hubs and for some miliseconds after the seizure; the post ictal signal
retains some of the properties of the crisis.

Enhanced synchronization in Neuronal networks with hubs

Our first simulation aims to show the influence of hubs in the synchronization among
neurons. Figure 1 shows the effect of the hubs on the individual spikes of single
neurons and on the LFP signal. The upper part of the Figs. 1a and 1b represent the
LFP for 0.3 and 0.7 hubs ratio respectively. Note the regularity of the signal with
increasing number of hubs. The bottom frame shows the individual firing patterns
along time, evidencing the local synchronism which results in the LFP shown above.
In this case, almost all neurons were firing at the same time and the network behaves
as a single oscillator.
For each value of HR, from 0.1 to 0.9, 100 networks were created using the random

and non-random procedure, then the mean of the SD over the 100 networks are
calculated. These results are summarized in Table 1. The averaged spike distance
for the networks with hubs (SDNR) shows a similar level of synchronization when
compared to the nerworks with random connections (SDR) until hubs ratio 0.3, after
this point, the synchronization of the non-random networks converges more strongly
as more hubs were added.
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Fig. 1. An example of LFP and spike firings of two networks with hubs ratio 0.3 (left) and
0.7 (right).

The creation of the hubs caused a great impact on SDNR for values 0.4 and 0.5,
but after that, the decline in the value of SD remained constant but slower. This may
be an indication of the existence of an upper bound on network synchronization using
the strategy of adding non-random connections [25].
The SDR stays around 0.2 until HR 0.8 and 0.9, when it shows a level of syn-

chronization similar to SDNR, but this similarity is possibly due a high number of
connections. That is, when the number of connections is very large, the presence of
hubs is diluted and both random and non-random configurations are equivalent.
The gain column in the Table 1 is defined as 1− SDR/SDNR, it is a simple ratio

to compare the impact of the addition of hubs over random connections. The peak
of this measure was between the interval 0.5 to 0.8. After 0.8 there is a drop in this
ratio, reflecting the gain of efficiency of random connections, due to a high density of
connections.
With regard to focal epilepsy, a previous work shows that only 35% of hubs nodes

found during the seizure are related to the seizure onset zone (SOZ), i.e. the region
responsible for the seizure onset and propagation [26]. This suggests that other re-
gions but the SOZ may have an important role in the seizure evolution [26,27]. The
results presented here point out to the importance of these hub nodes on the emer-
gence of synchronization in neuronal networks. However, little is known about the
mechanism behind the emergence of these abnormal hubs during the seizures. How
the brain networks switches from a healthy to an unhealthy state when the number
of hubs increases? In addition, this simulation presented a way to generate a highly
synchronized pattern, as found during seizures, without modifying the parameters of
the neurons, only the connections between them. This is a more realitic approach to
model seizures since epilepsy is probably a consequence of anomalous brain connec-
tivity [13].
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Table 1. Spike distance measure for networks with random (SDR) and non-random (SDNR)
connections. The third column (gain) is calculated as 1− SDR/SDNR.

hubs ratio SDR SDNR gain

0.1 0.267 0.267 0
0.2 0.266 0.263 0.011
0.3 0.264 0.230 0.128
0.4 0.259 0.105 0.594
0.5 0.253 0.048 0.810
0.6 0.239 0.033 0.861
0.7 0.210 0.029 0.861
0.8 0.143 0.028 0.804
0.9 0.064 0.027 0.578

Organized networks have a less complex LFP

In addition to the analysis of the neuronal firings, we estimated the Lempel-Ziv com-
plexity CLZ[28] over the LFP from two networks: a network with hubs and the network
with randomly distributed connections. In order to calculate the CLZ, 100 networks
were created for both configurations. In this way, we have a distribution of CLZ and
then we compared the medians of these using a statistical test.
Figure 2a shows the difference of the median of the CLZ for the LFP of networks

with random connections (NR) and nonrandom (NNR) as a function of the HR. The
positive trend is well defined from 0.4 until 0.8 when it stabilizes. In this interval,
the neurons from nonrandom network were more synchronized and thus, the LFP is
less complex than the random network. Notice that the conclusion about the network
synchronization similar to the one obtained with the SD measure (see Table 1), since
for HR greater than 0.8 there is no increase in the difference of complexity.
This result is in accordance with the one presented by Stam [29], who argues that

the seizure may be related with the loss of complexity of the signal since we also found
less complexity when the network is more synchronized. Furthermore, this measure
can give an idea about the structure of the network and the generator mechanism
of the LFP signal: a more organized structure leads to high synchronization and less
complexity.
At the bottom part of the Fig. 2 we show the p-value for the Wilcoxon test per-

formed over the two CLZ distributions used in the upper figure. The difference between
the two sets was significative from HR 0.4, indicating that from this point the possible
values of CLZ calculated from the LFP were too different. The level of significance
used here was α = 0.01.

Impact of the structure during the ictal period on the signal of the post-ictal
period

Functional brain networks exhibit a very dynamic structure since it is constantly
evolving as different cognitive tasks are performed. This evolving structure is also
present during seizures, for example the centrality measures of nodes shows a tem-
poral evolution [30]. An important question to the understanding of epilepsy is how
the network during the ictal period affects the post-ictal or even the effect of these
networks to the normal behavior between the seizures episodes. Despite the possible
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Fig. 2. (a) The difference between the median of CLZ for networks with random and non-
random connections. (b) p-value of Wilcoxon test between the CLZ from random and non
random networks. The dashed line indicates the α of 0.01.

consequences of the post-ictal on the healthy brain state, few works are dedicated to
the analysis of this period, an often neglected state in clinical epilepsy studies [31,32].
In order to investigate the effect of the ictal topology over the post-ictal signal,

we created the hubs structures only during an interval of simulation time, from 300
to 500 ms. After that, the adjacency matrix was restored to its values before the hubs
addition. The upper part of Fig. 3 shows two LFP signals from this simulation, where
before 300 ms both signals are equal. When the adjacency matrix is modified, the
LFP signals diverge but never become exactly equal again.
This difference was approached considering a long memory process due to hubs

addition. Therefore, we calculated the Hurst exponent in disjoint time windows. This
exponent was persistent even after the adjacency matrix is restored by elimination of
the hubs, which shows the effect of the perturbation of the ictal into post-ictal signal.
The bottom part of the Fig. 3 shows the boxplot of the H for each time window for
networks with hubs (left) and random (right). The LFP from random networks shows
H < 0.5 for all time windows, whereas the network with hubs present a H > 0.5 in
the interval with hubs. This may imply that the synchronization of the network has
a long term effect.
Moreover, the time window 6, immediately after the restoration of the previous

adjacency matrix, also shows a H > 0.5 for more than half of the LFP simulations.
This behavior resembles the post-ictal state, when the synchronism between brain
regions remains higher for a brief period, even after the end of the seizure.

4 Conclusions

Summarizing, using the model of Izhikevich, known for its simplicity and efficiency
in modelling neurons, we have studied the influence that the structure (random and
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Fig. 3. Upper figure: evolution of two LFP signals along time, the black line is the network
which received hubs in time 300 ms, the red line never received hubs. The vertical dashed
lines point to the interval where the hubs were present in the adjacency matrix of the black
signal. Bottom left: boxplot for the Hurst exponent H calculated for 10 disjoint time windows
with 100 H values. Bottom right: the same boxplot layout for the network without hubs.

non random with hubs) has in the synchronization of a network. We identify the high
synchronization state with the ictal state of the brain well known in epilepsy and also
study how the presence of hubs affects the post-ictal answer in the LFP.

BSM thanks the UNIEMP for their support. HAC thanks the FAPESP (process 2011/
11973-4) for their support.
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